HRNN 冷啟動配方(舊版) - Amazon Personalize

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

HRNN 冷啟動配方(舊版)

注意

舊版 HRNN 配方已不再可用。本文件僅供參考。

我們建議使用 aws-user-personalizaton (用戶個性化)配方而不是傳統的 HRNN 配方。用戶個性化改進並統一 HRNN 配方提供的功能。如需詳細資訊,請參閱用戶個性化配方

當您經常新增新項目和互動,並且想要立即取得這些項目的建議時,使用 HRNN-ColdStart 方法可預測使用者將與之互動的項目。HRNN-Coldstart 配方與 HRNN-Metadata 配方類似,但可讓您取得新項目的建議。

此外,當您想要從由於下列原因而具有較長之互動清單的訓練項目中排除時,可以使用 HRNN-Coldstart 配方:最近熱門趨勢,或互動可能非常不尋常且在訓練中引入噪音。搭配 HRNN-Coldstart,您可以篩選掉較不相關的項目,以建立用於訓練的子集。項目的子集 (稱為冷項目) 是在 Item 互動資料集中具有相關互動事件的項目。當項目具有以下情況時,該項目會被視為冷項目:

  • 互動次數比指定的最大互動次數少。您可以在配方的 cold_start_max_interactions 超參數中指定此值。

  • 相對持續時間比持續時間上限短。您可以在配方的 cold_start_max_duration 超參數中指定此值。

若要減少冷項目的數量,請為 cold_start_max_interactionscold_start_max_duration 設定較低的值。若要增加冷項目的數量,請為 cold_start_max_interactionscold_start_max_duration 設定較大的值。

HRNN-Coldstart 具有下列冷項目限制:

  • Maximum cold start items:80,000

  • Minimum cold start items:100

如果冷項目數超出此範圍,嘗試建立解決方案將會失敗。

HRNN-Coldstart 配方具有下列屬性:

  • 名稱aws-hrnn-coldstart

  • 食譜 Amazon 資源名稱(ARN)arn:aws:personalize:::recipe/aws-hrnn-coldstart

  • 算法 ARN — arn:aws:personalize:::algorithm/aws-hrnn-coldstart

  • 功能轉換 ARN — arn:aws:personalize:::feature-transformation/featurize_coldstart

  • 食譜類型USER_PERSONALIZATION

如需詳細資訊,請參閱選擇一個食譜

下表說明 HRNN-Coldstart 配方的超參數。超參數 是一種演算法參數,您可以調整以改善模型效能。演算法超參數可控制模型的執行方式。特徵化超參數可控制如何篩選要在訓練中使用的資料。選擇超參數最佳值的程序稱為超參數最佳化 (HPO)。如需詳細資訊,請參閱超參數和 HPO

該表格也提供每個超參數的下列資訊:

  • 範圍:[下限、上限]

  • 值類型:整數、連續 (浮點數)、分類 (布林值、清單、字串)

  • HPO 可調整:參數可以參與 HPO 嗎?

名稱 描述
演算法超參數
hidden_dimension

模型中使用的隱藏變數數量。隱藏變數 會重新建立使用者的購買歷史記錄和項目統計資料,以產生排名分數。當您的項目互動資料集包含更複雜的模式時,請指定更多隱藏維度。使用更多隱藏維度需要更大的資料集和更多時間處理。若要決定最佳值,請使用 HPO。若要使用 HPO,請在呼叫 CreateSolutionCreateSolutionVersion 操作時將 performHPO 設定為 true

預設值:149

範圍:[32, 256]

值類型:整數

HPO 可調整:是

bptt

決定是否透過時間技術使用反向傳播。透過時間的反向傳播 是一種遞歸神經網路演算法中權重的技術。使用 bptt 做為長期信用來連接早期事件的延遲獎勵。例如,延遲獎勵可以是按幾下滑鼠後的購買。早期事件可以是初始的按一下。即使在相同的事件類型中 (例如按一下),最好還是考慮長期效果,並將總獎勵最大化。若要考慮長期效果,請使用較大的 bptt 值。使用更大的 bptt 值需要更大的資料集和更多時間來處理。

預設值:32

範圍:[2, 32]

值類型:整數

HPO 可調整:是

recency_mask

決定模型是否應考慮項目互動資料集中的最新人氣趨勢。最新的熱門趨勢可能包括互動事件基礎模式的突然變化。若要訓練模型更多加權最近的事件,請將 recency_mask 設定為 true。若要訓練模型將過去的互動加權同等,請將 recency_mask 設定為 false。若要使用同等權重來獲得良好的建議,您可能需要較大的訓練資料集。

預設值:True

範圍:TrueFalse

值類型:布林值

HPO 可調整:是

特徵化超參數
cold_start_max_interactions

可將項目視為冷啟動的使用者項目互動最大數量。

預設值:15

範圍:正整數

值類型:整數

HPO 可調整:否

cold_start_max_duration

使用者項目互動被視為冷啟動項相對於起點的最大持續時間 (以天為單位)。若要設定使用者項目互動的起點,請設定 cold_start_relative_from 超參數。

預設值:5.0

範圍:正浮點數

值類型:浮點數

HPO 可調整:否

cold_start_relative_from

決定 HRNN-Coldstart 配方計算 cold_start_max_duration 的起點。從目前的時間計算,請選擇 currentTime

若要cold_start_max_duration從項目互動資料集中最新項目的時間戳記計算,請選擇latestItem。如果您經常新增項目,此設定很有用。

預設值:latestItem

範圍:currentTime, latestItem

值類型:字串

HPO 可調整:否

min_user_history_length_percentile

要包含在模型訓練中的使用者歷史記錄長度的最小百分位數。歷史記錄長度 是有關使用者的資料總量。使用 min_user_history_length_percentile 排除歷史記錄長度較短的使用者百分比。歷史記錄短的使用者通常根據項目熱門程度顯示模式,而不是使用者的個人需求或想要顯示模式。移除它們可以訓練模型更專注於資料中的基礎模式。檢閱使用者歷史記錄長度後,請使用長條圖或類似的工具,選擇適當的值。我們建議設定保留大部分使用者的值,但移除邊緣案例。

例如,設定 min__user_history_length_percentile to 0.05max_user_history_length_percentile to 0.95 包含所有使用者,歷史記錄長度底部或頂端 5% 的使用者除外。

預設值:0.0

範圍:[0.0, 1.0]

值類型:浮點數

HPO 可調整:否

max_user_history_length_percentile

要包含在模型訓練中的使用者歷史記錄長度的最大百分位數。歷史記錄長度 是有關使用者的資料總量。使用 max_user_history_length_percentile 排除歷史記錄長度較長的使用者百分比,因為這些使用者的資料往往包含雜訊。例如,機器人可能有一長串的自動化互動。移除這些使用者會限制訓練中的噪音。使用長條圖或類似工具檢閱使用者歷史記錄長度後,請選擇適當的值。我們建議設定保留大部分使用者的值,但移除邊緣案例。

例如,設定 min__user_history_length_percentile to 0.05max_user_history_length_percentile to 0.95 包含所有使用者,歷史記錄長度底部或頂端 5% 的使用者除外。

預設值:0.99

範圍:[0.0, 1.0]

值類型:浮點數

HPO 可調整:否