本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
檢測視頻中的自定義標籤
以下範例示範如何使用 DetectCustomLabels
從影片中擷取影格。該程式碼已使用 mov 和 mp4 格式的視訊檔案進行了測試。
將 DetectCustomLabels
配合擷取的影格使用
-
如果您尚未這麼做,請安裝並設定 AWS CLI 和 AWS SDKs. 如需詳細資訊,請參閱步驟 4:設定 AWS CLI 以及 AWS SDKs。
-
請確定您已具備
rekognition:DetectCustomLabels
和AmazonS3ReadOnlyAccess
的權限。如需更多詳細資訊,請參閱 步驟 4:設定 AWS CLI 以及 AWS SDKs。 -
使用以下範例程式碼。將此值變更為
videoFile
視訊檔案的名稱。projectVersionArn
將的值變更為 Amazon 自訂標籤模型的 Amazon Rekognition 資源名稱 (ARN)。# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to analyze a local video with an Amazon Rekognition Custom Labels model. """ import argparse import logging import json import math import cv2 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def analyze_video(rek_client, project_version_arn, video_file): """ Analyzes a local video file with an Amazon Rekognition Custom Labels model. Creates a results JSON file based on the name of the supplied video file. :param rek_client: A Boto3 Amazon Rekognition client. :param project_version_arn: The ARN of the Custom Labels model that you want to use. :param video_file: The video file that you want to analyze. """ custom_labels = [] cap = cv2.VideoCapture(video_file) frame_rate = cap.get(5) # Frame rate. while cap.isOpened(): frame_id = cap.get(1) # Current frame number. print(f"Processing frame id: {frame_id}") ret, frame = cap.read() if ret is not True: break if frame_id % math.floor(frame_rate) == 0: has_frame, image_bytes = cv2.imencode(".jpg", frame) if has_frame: response = rek_client.detect_custom_labels( Image={ 'Bytes': image_bytes.tobytes(), }, ProjectVersionArn=project_version_arn ) for elabel in response["CustomLabels"]: elabel["Timestamp"] = (frame_id/frame_rate)*1000 custom_labels.append(elabel) print(custom_labels) with open(video_file + ".json", "w", encoding="utf-8") as f: f.write(json.dumps(custom_labels)) cap.release() def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "project_version_arn", help="The ARN of the model that you want to use." ) parser.add_argument( "video_file", help="The local path to the video that you want to analyze." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") analyze_video(rekognition_client, args.project_version_arn, args.video_file) except ClientError as err: print(f"Couldn't analyze video: {err}") if __name__ == "__main__": main()