停止 Amazon Rekognition 自訂標籤模型 - Rekognition

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

停止 Amazon Rekognition 自訂標籤模型

您可以使用主控台或使用版本操作停止執行 Amazon Rekognition 自訂標籤模型。StopProject

停止 Amazon Rekognition 自訂標籤模型 (主控台)

請使用以下步驟來停止執行中的 Amazon Rekognition 自訂標籤模型。您可以直接從主控台停止模型,或使用主控台提供的 AWS SDK 程式碼。

停止模型 (主控台)
  1. 開啟 Amazon Rekognition 主控台:https://console.aws.amazon.com/rekognition/

  2. 選擇使用自訂標籤

  3. 選擇開始使用

  4. 在左側導覽視窗中,選擇 專案

  5. 專案 頁面中,選擇包含要停止的培訓模型的專案。

  6. 模型 的區域中,選擇您要停止的模型。

  7. 選擇 使用模型 標籤。

  8. Stop model using the console
    1. 啟動或停止模型 的區域中,選擇 停止

    2. 停止模型 的對話框中,輸入 停止 以確認您要停止模型。

    3. 選擇 停止 以停止模型。

    Stop model using the AWS SDK

    使用模型 的區域中,執行以下操作:

    1. 選擇 API 程式碼。

    2. 選擇 AWS CLIPython

    3. 停止模型 中複製範例程式碼。

    4. 使用範例程式碼來停止模型。如需詳細資訊,請參閱 停止 Amazon Rekognition 自訂標籤模型 (SDK)

  9. 在頁面頂端選擇您的專案名稱,以返回專案概述頁面。

  10. 模型 的區域中,檢查模型的狀態。當模型狀態顯示為 已停止 時,則表示模型已經停止。

停止 Amazon Rekognition 自訂標籤模型 (SDK)

您可以通過調用StopProject版本 API 並在ProjectVersionArn輸入參數中傳遞模型的 Amazon 資源名稱(ARN)來停止模型。

模型可能需要一段時間才能停止。若要檢查目前狀態,請使用 DescribeProjectVersions

停止模型 (SDK)
  1. 如果您尚未這樣做,請安裝並設定 AWS CLI 和 AWS SDK。如需詳細資訊,請參閱 步驟 4:設定 AWS CLI 以及 AWS SDKs

  2. 使用下列範例程式碼來停止執行中的模型。

    CLI

    project-version-arn 的值變更為您要停止的模型版本的 ARN。

    aws rekognition stop-project-version --project-version-arn "model arn" \ --profile custom-labels-access
    Python

    以下範例會停止已在執行中的模型。

    請提供以下命令列參數:

    • project_arn — 包含您要停止的模型的專案的 ARN。

    • model_arn — 您要停止的模型 ARN。

    # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to stop a running Amazon Lookout for Vision model. """ import argparse import logging import time import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def get_model_status(rek_client, project_arn, model_arn): """ Gets the current status of an Amazon Rekognition Custom Labels model :param rek_client: The Amazon Rekognition Custom Labels Boto3 client. :param project_name: The name of the project that you want to use. :param model_arn: The name of the model that you want the status for. """ logger.info ("Getting status for %s.", model_arn) # Extract the model version from the model arn. version_name=(model_arn.split("version/",1)[1]).rpartition('/')[0] # Get the model status. models=rek_client.describe_project_versions(ProjectArn=project_arn, VersionNames=[version_name]) for model in models['ProjectVersionDescriptions']: logger.info("Status: %s",model['StatusMessage']) return model["Status"] # No model found. logger.exception("Model %s not found.", model_arn) raise Exception("Model %s not found.", model_arn) def stop_model(rek_client, project_arn, model_arn): """ Stops a running Amazon Rekognition Custom Labels Model. :param rek_client: The Amazon Rekognition Custom Labels Boto3 client. :param project_arn: The ARN of the project that you want to stop running. :param model_arn: The ARN of the model (ProjectVersion) that you want to stop running. """ logger.info("Stopping model: %s", model_arn) try: # Stop the model. response=rek_client.stop_project_version(ProjectVersionArn=model_arn) logger.info("Status: %s", response['Status']) # stops when hosting has stopped or failure. status = "" finished = False while finished is False: status=get_model_status(rek_client, project_arn, model_arn) if status == "STOPPING": logger.info("Model stopping in progress...") time.sleep(10) continue if status == "STOPPED": logger.info("Model is not running.") finished = True continue error_message = f"Error stopping model. Unexepected state: {status}" logger.exception(error_message) raise Exception(error_message) logger.info("finished. Status %s", status) return status except ClientError as err: logger.exception("Couldn't stop model - %s: %s", model_arn,err.response['Error']['Message']) raise def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "project_arn", help="The ARN of the project that contains the model that you want to stop." ) parser.add_argument( "model_arn", help="The ARN of the model that you want to stop." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: # Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() # Stop the model. session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") status=stop_model(rekognition_client, args.project_arn, args.model_arn) print(f"Finished stopping model: {args.model_arn}") print(f"Status: {status}") except ClientError as err: logger.exception("Problem stopping model:%s",err) print(f"Failed to stop model: {err}") except Exception as err: logger.exception("Problem stopping model:%s", err) print(f"Failed to stop model: {err}") if __name__ == "__main__": main()
    Java V2

    請提供以下命令列參數:

    • project_arn — 包含您要停止的模型的專案的 ARN。

    • model_arn — 您要停止的模型 ARN。

    /* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 */ package com.example.rekognition; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest; import software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse; import software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription; import software.amazon.awssdk.services.rekognition.model.ProjectVersionStatus; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.StopProjectVersionRequest; import software.amazon.awssdk.services.rekognition.model.StopProjectVersionResponse; import java.util.logging.Level; import java.util.logging.Logger; public class StopModel { public static final Logger logger = Logger.getLogger(StopModel.class.getName()); public static int findForwardSlash(String modelArn, int n) { int start = modelArn.indexOf('/'); while (start >= 0 && n > 1) { start = modelArn.indexOf('/', start + 1); n -= 1; } return start; } public static void stopMyModel(RekognitionClient rekClient, String projectArn, String modelArn) throws Exception, RekognitionException { try { logger.log(Level.INFO, "Stopping {0}", modelArn); StopProjectVersionRequest stopProjectVersionRequest = StopProjectVersionRequest.builder() .projectVersionArn(modelArn).build(); StopProjectVersionResponse response = rekClient.stopProjectVersion(stopProjectVersionRequest); logger.log(Level.INFO, "Status: {0}", response.statusAsString()); // Get the model version int start = findForwardSlash(modelArn, 3) + 1; int end = findForwardSlash(modelArn, 4); String versionName = modelArn.substring(start, end); // wait until model stops DescribeProjectVersionsRequest describeProjectVersionsRequest = DescribeProjectVersionsRequest.builder() .projectArn(projectArn).versionNames(versionName).build(); boolean stopped = false; // Wait until create finishes do { DescribeProjectVersionsResponse describeProjectVersionsResponse = rekClient .describeProjectVersions(describeProjectVersionsRequest); for (ProjectVersionDescription projectVersionDescription : describeProjectVersionsResponse .projectVersionDescriptions()) { ProjectVersionStatus status = projectVersionDescription.status(); logger.log(Level.INFO, "stopping model: {0} ", modelArn); switch (status) { case STOPPED: logger.log(Level.INFO, "Model stopped"); stopped = true; break; case STOPPING: Thread.sleep(5000); break; case FAILED: String error = "Model stopping failed: " + projectVersionDescription.statusAsString() + " " + projectVersionDescription.statusMessage() + " " + modelArn; logger.log(Level.SEVERE, error); throw new Exception(error); default: String unexpectedError = "Unexpected stopping state: " + projectVersionDescription.statusAsString() + " " + projectVersionDescription.statusMessage() + " " + modelArn; logger.log(Level.SEVERE, unexpectedError); throw new Exception(unexpectedError); } } } while (stopped == false); } catch (RekognitionException e) { logger.log(Level.SEVERE, "Could not stop model: {0}", e.getMessage()); throw e; } } public static void main(String[] args) { String modelArn = null; String projectArn = null; final String USAGE = "\n" + "Usage: " + "<project_name> <version_name>\n\n" + "Where:\n" + " project_arn - The ARN of the project that contains the model that you want to stop. \n\n" + " model_arn - The ARN of the model version that you want to stop.\n\n"; if (args.length != 2) { System.out.println(USAGE); System.exit(1); } projectArn = args[0]; modelArn = args[1]; try { // Get the Rekognition client. RekognitionClient rekClient = RekognitionClient.builder() .credentialsProvider(ProfileCredentialsProvider.create("custom-labels-access")) .region(Region.US_WEST_2) .build(); // Stop model stopMyModel(rekClient, projectArn, modelArn); System.out.println(String.format("Model stopped: %s", modelArn)); rekClient.close(); } catch (RekognitionException rekError) { logger.log(Level.SEVERE, "Rekognition client error: {0}", rekError.getMessage()); System.exit(1); } catch (Exception rekError) { logger.log(Level.SEVERE, "Error: {0}", rekError.getMessage()); System.exit(1); } } }