本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
比較映像中的人臉
使用 Rekognition,您可以使用操作比較兩個影像之間的臉孔。CompareFaces此功能對於身份驗證或照片匹配等應用程序非常有用。
CompareFaces 將來源影像中的臉孔與目標影像中的每個臉孔進行比較。圖像 CompareFaces 作為以下任一方式傳遞給:
-
圖像的 Base64 編碼表示。
-
Amazon S3 對象。
人臉檢測與臉部比較
臉部比較與臉部偵測不同。臉部偵測 (使用 DetectFaces) 僅識別影像或視訊中臉孔的存在與位置。相比之下,臉部比較包括將來源影像中偵測到的臉孔與目標影像中的臉孔進行比較,以尋找相符項目。
相似性閾值
使用similarityThreshold
參數可定義要包含在回應中的相符項目的最小信賴等級。依預設,回應中只會傳回相似度分數大於或等於 80% 的臉孔。
CompareFaces
使用機器學習算法,這是概率的。假陰性指的是不正確的預測,指出目標映像中的人臉與來源映像中的人臉相比具有較低的相似度置信度分數。為了減少偽陰性的可能性,建議您將目標映像與多個來源映像進行比較。如果您打算使用 CompareFaces
做出會影響個人權利、隱私權或服務存取權的決定,我們建議您在採取行動之前,將結果傳遞給人員進行審查並進一步驗證。
下列程式碼範例示範如何針對各種 AWS SDK 使用這些 CompareFaces 作業。在此 AWS CLI 範例中,您將兩個 JPEG 影像上傳到 Amazon S3 儲存貯體,並指定物件金鑰名稱。在其他範例中,您會從本機檔案系統載入兩個檔案,並以映像位元組陣列的方式加以輸入。
比較臉部
-
如果您尚未執行:
-
建立或更新具有AmazonRekognitionFullAccess
和 AmazonS3ReadOnlyAccess
(僅限AWS CLI 範例) 權限的使用者。如需詳細資訊,請參閱 步驟 1:設定AWS帳戶並建立使用者。
-
安裝和設定 AWS CLI AWS 軟體開發套件。如需詳細資訊,請參閱 步驟 2:設定 AWS CLI 以及 AWS SDKs。
-
使用下列程式碼範例來呼叫 CompareFaces
操作。
- Java
-
此範例顯示有關來源和目標映像 (從本機檔案系統載入) 中相符臉孔的資訊。
將 sourceImage
與 targetImage
的值取代為來源和目標映像的路徑和檔案名稱。
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
package aws.example.rekognition.image;
import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.BoundingBox;
import com.amazonaws.services.rekognition.model.CompareFacesMatch;
import com.amazonaws.services.rekognition.model.CompareFacesRequest;
import com.amazonaws.services.rekognition.model.CompareFacesResult;
import com.amazonaws.services.rekognition.model.ComparedFace;
import java.util.List;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.nio.ByteBuffer;
import com.amazonaws.util.IOUtils;
public class CompareFaces {
public static void main(String[] args) throws Exception{
Float similarityThreshold = 70F;
String sourceImage = "source.jpg";
String targetImage = "target.jpg";
ByteBuffer sourceImageBytes=null;
ByteBuffer targetImageBytes=null;
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient();
//Load source and target images and create input parameters
try (InputStream inputStream = new FileInputStream(new File(sourceImage))) {
sourceImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
catch(Exception e)
{
System.out.println("Failed to load source image " + sourceImage);
System.exit(1);
}
try (InputStream inputStream = new FileInputStream(new File(targetImage))) {
targetImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
catch(Exception e)
{
System.out.println("Failed to load target images: " + targetImage);
System.exit(1);
}
Image source=new Image()
.withBytes(sourceImageBytes);
Image target=new Image()
.withBytes(targetImageBytes);
CompareFacesRequest request = new CompareFacesRequest()
.withSourceImage(source)
.withTargetImage(target)
.withSimilarityThreshold(similarityThreshold);
// Call operation
CompareFacesResult compareFacesResult=rekognitionClient.compareFaces(request);
// Display results
List <CompareFacesMatch> faceDetails = compareFacesResult.getFaceMatches();
for (CompareFacesMatch match: faceDetails){
ComparedFace face= match.getFace();
BoundingBox position = face.getBoundingBox();
System.out.println("Face at " + position.getLeft().toString()
+ " " + position.getTop()
+ " matches with " + match.getSimilarity().toString()
+ "% confidence.");
}
List<ComparedFace> uncompared = compareFacesResult.getUnmatchedFaces();
System.out.println("There was " + uncompared.size()
+ " face(s) that did not match");
}
}
- Java V2
-
此代碼取自 AWS 文檔 SDK 示例 GitHub 存儲庫。請參閱此處的完整範例。
import java.util.List;
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import software.amazon.awssdk.services.rekognition.model.Image;
import software.amazon.awssdk.services.rekognition.model.BoundingBox;
import software.amazon.awssdk.services.rekognition.model.CompareFacesMatch;
import software.amazon.awssdk.services.rekognition.model.CompareFacesRequest;
import software.amazon.awssdk.services.rekognition.model.CompareFacesResponse;
import software.amazon.awssdk.services.rekognition.model.ComparedFace;
import software.amazon.awssdk.core.SdkBytes;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
// snippet-end:[rekognition.java2.detect_faces.import]
/**
* Before running this Java V2 code example, set up your development environment, including your credentials.
*
* For more information, see the following documentation topic:
*
* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
*/
public class CompareFaces {
public static void main(String[] args) {
final String usage = "\n" +
"Usage: " +
" <pathSource> <pathTarget>\n\n" +
"Where:\n" +
" pathSource - The path to the source image (for example, C:\\AWS\\pic1.png). \n " +
" pathTarget - The path to the target image (for example, C:\\AWS\\pic2.png). \n\n";
if (args.length != 2) {
System.out.println(usage);
System.exit(1);
}
Float similarityThreshold = 70F;
String sourceImage = args[0];
String targetImage = args[1];
Region region = Region.US_EAST_1;
RekognitionClient rekClient = RekognitionClient.builder()
.region(region)
.credentialsProvider(ProfileCredentialsProvider.create("profile-name"))
.build();
compareTwoFaces(rekClient, similarityThreshold, sourceImage, targetImage);
rekClient.close();
}
// snippet-start:[rekognition.java2.compare_faces.main]
public static void compareTwoFaces(RekognitionClient rekClient, Float similarityThreshold, String sourceImage, String targetImage) {
try {
InputStream sourceStream = new FileInputStream(sourceImage);
InputStream tarStream = new FileInputStream(targetImage);
SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);
SdkBytes targetBytes = SdkBytes.fromInputStream(tarStream);
// Create an Image object for the source image.
Image souImage = Image.builder()
.bytes(sourceBytes)
.build();
Image tarImage = Image.builder()
.bytes(targetBytes)
.build();
CompareFacesRequest facesRequest = CompareFacesRequest.builder()
.sourceImage(souImage)
.targetImage(tarImage)
.similarityThreshold(similarityThreshold)
.build();
// Compare the two images.
CompareFacesResponse compareFacesResult = rekClient.compareFaces(facesRequest);
List<CompareFacesMatch> faceDetails = compareFacesResult.faceMatches();
for (CompareFacesMatch match: faceDetails){
ComparedFace face= match.face();
BoundingBox position = face.boundingBox();
System.out.println("Face at " + position.left().toString()
+ " " + position.top()
+ " matches with " + face.confidence().toString()
+ "% confidence.");
}
List<ComparedFace> uncompared = compareFacesResult.unmatchedFaces();
System.out.println("There was " + uncompared.size() + " face(s) that did not match");
System.out.println("Source image rotation: " + compareFacesResult.sourceImageOrientationCorrection());
System.out.println("target image rotation: " + compareFacesResult.targetImageOrientationCorrection());
} catch(RekognitionException | FileNotFoundException e) {
System.out.println("Failed to load source image " + sourceImage);
System.exit(1);
}
}
// snippet-end:[rekognition.java2.compare_faces.main]
}
- AWS CLI
-
此範例會顯示compare-faces
AWS CLI 作業的 JSON 輸出。
將 bucket-name
取代為 Amazon S3 儲存貯體的名稱,其中包含來源和目標映像。將 source.jpg
和 target.jpg
取代為來源和目標映像的檔案名稱。
aws rekognition compare-faces --target-image \
"{"S3Object":{"Bucket":"bucket-name","Name":"image-name"}}" \
--source-image "{"S3Object":{"Bucket":"bucket-name","Name":"image-name"}}"
--profile profile-name
如果您在 Windows 裝置上存取 CLI,請使用雙引號而非單引號,並以反斜線 (即\) 替代內部雙引號,以解決您可能遇到的任何剖析器錯誤。例如,請參閱下列內容:
aws rekognition compare-faces --target-image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" \
--source-image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" --profile profile-name
- Python
-
此範例顯示有關來源和目標映像 (從本機檔案系統載入) 中相符臉孔的資訊,表面載入在從本機檔案系統。
將 source_file
與 target_file
的值取代為來源和目標映像的路徑和檔案名稱。將建立 Rekognition 工作階段的行中 profile_name
值取代為您開發人員設定檔的名稱。
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
import boto3
def compare_faces(sourceFile, targetFile):
session = boto3.Session(profile_name='profile-name')
client = session.client('rekognition')
imageSource = open(sourceFile, 'rb')
imageTarget = open(targetFile, 'rb')
response = client.compare_faces(SimilarityThreshold=80,
SourceImage={'Bytes': imageSource.read()},
TargetImage={'Bytes': imageTarget.read()})
for faceMatch in response['FaceMatches']:
position = faceMatch['Face']['BoundingBox']
similarity = str(faceMatch['Similarity'])
print('The face at ' +
str(position['Left']) + ' ' +
str(position['Top']) +
' matches with ' + similarity + '% confidence')
imageSource.close()
imageTarget.close()
return len(response['FaceMatches'])
def main():
source_file = 'source-file-name'
target_file = 'target-file-name'
face_matches = compare_faces(source_file, target_file)
print("Face matches: " + str(face_matches))
if __name__ == "__main__":
main()
- .NET
-
此範例顯示有關來源和目標映像 (從本機檔案系統載入) 中相符臉孔的資訊。
將 sourceImage
與 targetImage
的值取代為來源和目標映像的路徑和檔案名稱。
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
using System;
using System.IO;
using Amazon.Rekognition;
using Amazon.Rekognition.Model;
public class CompareFaces
{
public static void Example()
{
float similarityThreshold = 70F;
String sourceImage = "source.jpg";
String targetImage = "target.jpg";
AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient();
Amazon.Rekognition.Model.Image imageSource = new Amazon.Rekognition.Model.Image();
try
{
using (FileStream fs = new FileStream(sourceImage, FileMode.Open, FileAccess.Read))
{
byte[] data = new byte[fs.Length];
fs.Read(data, 0, (int)fs.Length);
imageSource.Bytes = new MemoryStream(data);
}
}
catch (Exception)
{
Console.WriteLine("Failed to load source image: " + sourceImage);
return;
}
Amazon.Rekognition.Model.Image imageTarget = new Amazon.Rekognition.Model.Image();
try
{
using (FileStream fs = new FileStream(targetImage, FileMode.Open, FileAccess.Read))
{
byte[] data = new byte[fs.Length];
data = new byte[fs.Length];
fs.Read(data, 0, (int)fs.Length);
imageTarget.Bytes = new MemoryStream(data);
}
}
catch (Exception)
{
Console.WriteLine("Failed to load target image: " + targetImage);
return;
}
CompareFacesRequest compareFacesRequest = new CompareFacesRequest()
{
SourceImage = imageSource,
TargetImage = imageTarget,
SimilarityThreshold = similarityThreshold
};
// Call operation
CompareFacesResponse compareFacesResponse = rekognitionClient.CompareFaces(compareFacesRequest);
// Display results
foreach(CompareFacesMatch match in compareFacesResponse.FaceMatches)
{
ComparedFace face = match.Face;
BoundingBox position = face.BoundingBox;
Console.WriteLine("Face at " + position.Left
+ " " + position.Top
+ " matches with " + match.Similarity
+ "% confidence.");
}
Console.WriteLine("There was " + compareFacesResponse.UnmatchedFaces.Count + " face(s) that did not match");
}
}
- Ruby
-
此範例顯示有關來源和目標映像 (從本機檔案系統載入) 中相符臉孔的資訊,表面載入在從本機檔案系統。
將 photo_source
與 photo_target
的值取代為來源和目標映像的路徑和檔案名稱。
# Add to your Gemfile
# gem 'aws-sdk-rekognition'
require 'aws-sdk-rekognition'
credentials = Aws::Credentials.new(
ENV['AWS_ACCESS_KEY_ID'],
ENV['AWS_SECRET_ACCESS_KEY']
)
bucket = 'bucket' # the bucketname without s3://
photo_source = 'source.jpg'
photo_target = 'target.jpg'
client = Aws::Rekognition::Client.new credentials: credentials
attrs = {
source_image: {
s3_object: {
bucket: bucket,
name: photo_source
},
},
target_image: {
s3_object: {
bucket: bucket,
name: photo_target
},
},
similarity_threshold: 70
}
response = client.compare_faces attrs
response.face_matches.each do |face_match|
position = face_match.face.bounding_box
similarity = face_match.similarity
puts "The face at: #{position.left}, #{position.top} matches with #{similarity} % confidence"
end
- Node.js
-
此範例顯示有關來源和目標映像 (從本機檔案系統載入) 中相符臉孔的資訊,表面載入在從本機檔案系統。
將 photo_source
與 photo_target
的值取代為來源和目標映像的路徑和檔案名稱。將建立 Rekognition 工作階段的行中 profile_name
值取代為您開發人員設定檔的名稱。
// Load the SDK
var AWS = require('aws-sdk');
const bucket = 'bucket-name' // the bucket name without s3://
const photo_source = 'photo-source-name' // path and the name of file
const photo_target = 'photo-target-name'
var credentials = new AWS.SharedIniFileCredentials({profile: 'profile-name'});
AWS.config.credentials = credentials;
AWS.config.update({region:'region-name'});
const client = new AWS.Rekognition();
const params = {
SourceImage: {
S3Object: {
Bucket: bucket,
Name: photo_source
},
},
TargetImage: {
S3Object: {
Bucket: bucket,
Name: photo_target
},
},
SimilarityThreshold: 70
}
client.compareFaces(params, function(err, response) {
if (err) {
console.log(err, err.stack); // an error occurred
} else {
response.FaceMatches.forEach(data => {
let position = data.Face.BoundingBox
let similarity = data.Similarity
console.log(`The face at: ${position.Left}, ${position.Top} matches with ${similarity} % confidence`)
}) // for response.faceDetails
} // if
});
CompareFaces 操作請求
CompareFaces
的輸入是映像。在此範例中,來源和目標映像從本機檔案系統載入。SimilarityThreshold
輸入參數指定比較臉孔必須符合的最低可信度應包含在回應中。如需詳細資訊,請參閱 使用映像。
{
"SourceImage": {
"Bytes": "/9j/4AAQSk2Q==..."
},
"TargetImage": {
"Bytes": "/9j/4O1Q==..."
},
"SimilarityThreshold": 70
}
CompareFaces 作業回應
回應包括:
-
臉孔相符的陣列:符合臉孔的清單,其中包含相似度分數和每個相符臉孔的中繼資料。如果多個面相符,faceMatches
陣列包括所有的臉部相符項目。
-
臉孔比對詳細資料:每個相符的臉孔也會提供邊界方框、置信度值、地標位置和相似度分數。
-
不相符的臉孔清單:回應也包含目標影像中與來源影像臉孔不相符的臉孔。包括每個無與倫比的面的邊界框。
-
來源臉孔資訊:包括來源影像中用於比較的臉孔的相關資訊,包括邊界方框和置信度值。
此範例顯示在目標影像中找到了一個相符的面。對於該相符的人臉,該回應會提供週框方塊與可信度值 (Amazon Rekognition 對週框方塊包含人臉的可信度)。99.99 的相似度分數表示臉孔有多相似。此範例也會顯示 Amazon Rekognition 在目標影像中找到的一張臉孔,與來源影像中分析的臉孔不符。
{
"FaceMatches": [{
"Face": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185
},
"Confidence": 99.98751068115234,
"Pose": {
"Yaw": -82.36799621582031,
"Roll": -62.13221740722656,
"Pitch": 0.8652129173278809
},
"Quality": {
"Sharpness": 99.99880981445312,
"Brightness": 54.49755096435547
},
"Landmarks": [{
"Y": 0.2996366024017334,
"X": 0.41685718297958374,
"Type": "eyeLeft"
},
{
"Y": 0.2658946216106415,
"X": 0.4414493441581726,
"Type": "eyeRight"
},
{
"Y": 0.3465650677680969,
"X": 0.48636093735694885,
"Type": "nose"
},
{
"Y": 0.30935320258140564,
"X": 0.6251809000968933,
"Type": "mouthLeft"
},
{
"Y": 0.26942989230155945,
"X": 0.6454493403434753,
"Type": "mouthRight"
}
]
},
"Similarity": 100.0
}],
"SourceImageOrientationCorrection": "ROTATE_90",
"TargetImageOrientationCorrection": "ROTATE_90",
"UnmatchedFaces": [{
"BoundingBox": {
"Width": 0.4890109896659851,
"Top": 0.6566604375839233,
"Left": 0.10989011079072952,
"Height": 0.278298944234848
},
"Confidence": 99.99992370605469,
"Pose": {
"Yaw": 51.51519012451172,
"Roll": -110.32493591308594,
"Pitch": -2.322134017944336
},
"Quality": {
"Sharpness": 99.99671173095703,
"Brightness": 57.23163986206055
},
"Landmarks": [{
"Y": 0.8288310766220093,
"X": 0.3133862614631653,
"Type": "eyeLeft"
},
{
"Y": 0.7632885575294495,
"X": 0.28091415762901306,
"Type": "eyeRight"
},
{
"Y": 0.7417283654212952,
"X": 0.3631140887737274,
"Type": "nose"
},
{
"Y": 0.8081989884376526,
"X": 0.48565614223480225,
"Type": "mouthLeft"
},
{
"Y": 0.7548204660415649,
"X": 0.46090251207351685,
"Type": "mouthRight"
}
]
}],
"SourceImageFace": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185
},
"Confidence": 99.98751068115234
}
}