Execution APIs - Amazon SageMaker Unified Studio

Execution APIs

Execution APIs provide you the ability to start an execution to run a notebook headlessly within the same user space or on remote compute.

Local Execution APIs

Use the following APIs to start, stop, get, or list executions within the user's space.

StartExecution

You can start a notebook execution headlessly within the same user space.

from sagemaker_studio.sagemaker_studio_api import SageMakerStudioAPI from sagemaker_studio import ClientConfig config = ClientConfig(overrides={ "execution": { "local": True, } }) sagemaker_studio_api = SageMakerStudioAPI(config) result = sagemaker_studio_api.execution_client.start_execution( execution_name="my-execution", input_config={"notebook_config": { "input_path": "src/folder2/test.ipynb"}}, execution_type="NOTEBOOK", output_config={"notebook_config": { "output_formats": ["NOTEBOOK", "HTML"] }} ) print(result)

GetExecution

You can retrieve details about a local execution using the GetExecution API.

from sagemaker_studio.sagemaker_studio_api import SageMakerStudioAPI from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2", overrides={ "execution": { "local": True, } }) sagemaker_studio_api = SageMakerStudioAPI(config) get_response = sagemaker_studio_api.execution_client.get_execution(execution_id="asdf-3b998be2-02dd-42af-8802-593d48d04daa") print(get_response)

ListExecutions

You can use the ListExecutions API to list all the executions that ran in the user's space.

from sagemaker_studio.sagemaker_studio_api import SageMakerStudioAPI from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2", overrides={ "execution": { "local": True, } }) sagemaker_studio_api = SageMakerStudioAPI(config) list_executions_response = sagemaker_studio_api.execution_client.list_executions(status="COMPLETED") print(list_executions_response)

StopExecution

You can use the StopExecution API to stop an execution that's running in the user space.

from sagemaker_studio.sagemaker_studio_api import SageMakerStudioAPI from sagemaker_studio import ClientConfig config = ClientConfig(region="us-west-2", overrides={ "execution": { "local": True, } }) sagemaker_studio_api = SageMakerStudioAPI(config) stop_response = sagemaker_studio_api.execution_client.stop_execution(execution_id="asdf-3b998be2-02dd-42af-8802-593d48d04daa") print(stop_response)