AWS SDK for JavaScript V3 API參考指南會詳細說明第 3 版 (V3) 的所有API操作 AWS SDK for JavaScript 。
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
使用 SDK for JavaScript (v3) 的 Amazon Comprehend 範例
下列程式碼範例示範如何使用 AWS SDK for JavaScript (v3) 搭配 Amazon Comprehend 來執行動作和實作常見案例。
案例是向您展示如何呼叫服務中的多個函數或與其他 AWS 服務組合來完成特定任務的程式碼範例。
每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。
主題
案例
下面的程式碼範例說明如何建置可即時記錄、轉錄和翻譯直播音訊並透過電子郵件傳送結果的應用程式。
- SDK for JavaScript (v3)
-
示範如何使用 Amazon Transcribe 建置應用程式,以即時記錄、轉錄和翻譯即時音訊,並使用 Amazon Simple Email Service (Amazon) 傳送電子郵件結果SES。
如需完整的原始程式碼和如何設定和執行的指示,請參閱 上的完整範例GitHub
。 此範例中使用的服務
Amazon Comprehend
Amazon SES
Amazon Transcribe
Amazon Translate
下列程式碼範例示範如何建立聊天機器人以吸引網站訪客。
- SDK for JavaScript (v3)
-
示範如何使用 Amazon Lex 在 Web 應用程式中API建立聊天機器人,以吸引您的網站訪客。
如需完整的原始程式碼和如何設定和執行的指示,請參閱 AWS SDK for JavaScript 開發人員指南中的建置 Amazon Lex 聊天機器人的完整範例。
此範例中使用的服務
Amazon Comprehend
Amazon Lex
Amazon Translate
下列程式碼範例會示範如何建立可分析客戶評論卡、從其原始語言進行翻譯、判斷對方情緒,以及透過翻譯後的文字產生音訊檔案的應用程式。
- SDK for JavaScript (v3)
-
此範例應用程式會分析和存儲客戶的意見回饋卡。具體來說,它滿足了紐約市一家虛構飯店的需求。飯店以實體評論卡的形式收到賓客以各種語言撰寫的意見回饋。這些意見回饋透過 Web 用戶端上傳至應用程式。評論卡的影像上傳後,系統會執行下列步驟:
-
文字內容是使用 Amazon Textract 從影像中擷取。
-
Amazon Comprehend 會決定擷取文字及其用語的情感。
-
擷取的文字內容會使用 Amazon Translate 翻譯成英文。
-
Amazon Polly 會使用擷取的文字內容合成音訊檔案。
完整的應用程式可透過 AWS CDK 部署。如需原始程式碼和部署指示,請參閱 GitHub
中的專案。以下摘錄顯示如何在 Lambda 函數內 AWS SDK for JavaScript 使用 。 import { ComprehendClient, DetectDominantLanguageCommand, DetectSentimentCommand, } from "@aws-sdk/client-comprehend"; /** * Determine the language and sentiment of the extracted text. * * @param {{ source_text: string}} extractTextOutput */ export const handler = async (extractTextOutput) => { const comprehendClient = new ComprehendClient({}); const detectDominantLanguageCommand = new DetectDominantLanguageCommand({ Text: extractTextOutput.source_text, }); // The source language is required for sentiment analysis and // translation in the next step. const { Languages } = await comprehendClient.send( detectDominantLanguageCommand, ); const languageCode = Languages[0].LanguageCode; const detectSentimentCommand = new DetectSentimentCommand({ Text: extractTextOutput.source_text, LanguageCode: languageCode, }); const { Sentiment } = await comprehendClient.send(detectSentimentCommand); return { sentiment: Sentiment, language_code: languageCode, }; };
import { DetectDocumentTextCommand, TextractClient, } from "@aws-sdk/client-textract"; /** * Fetch the S3 object from the event and analyze it using Amazon Textract. * * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">} eventBridgeS3Event */ export const handler = async (eventBridgeS3Event) => { const textractClient = new TextractClient(); const detectDocumentTextCommand = new DetectDocumentTextCommand({ Document: { S3Object: { Bucket: eventBridgeS3Event.bucket, Name: eventBridgeS3Event.object, }, }, }); // Textract returns a list of blocks. A block can be a line, a page, word, etc. // Each block also contains geometry of the detected text. // For more information on the Block type, see https://docs.aws.amazon.com/textract/latest/dg/API_Block.html. const { Blocks } = await textractClient.send(detectDocumentTextCommand); // For the purpose of this example, we are only interested in words. const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map( (b) => b.Text, ); return extractedWords.join(" "); };
import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly"; import { S3Client } from "@aws-sdk/client-s3"; import { Upload } from "@aws-sdk/lib-storage"; /** * Synthesize an audio file from text. * * @param {{ bucket: string, translated_text: string, object: string}} sourceDestinationConfig */ export const handler = async (sourceDestinationConfig) => { const pollyClient = new PollyClient({}); const synthesizeSpeechCommand = new SynthesizeSpeechCommand({ Engine: "neural", Text: sourceDestinationConfig.translated_text, VoiceId: "Ruth", OutputFormat: "mp3", }); const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand); const audioKey = `${sourceDestinationConfig.object}.mp3`; // Store the audio file in S3. const s3Client = new S3Client(); const upload = new Upload({ client: s3Client, params: { Bucket: sourceDestinationConfig.bucket, Key: audioKey, Body: AudioStream, ContentType: "audio/mp3", }, }); await upload.done(); return audioKey; };
import { TranslateClient, TranslateTextCommand, } from "@aws-sdk/client-translate"; /** * Translate the extracted text to English. * * @param {{ extracted_text: string, source_language_code: string}} textAndSourceLanguage */ export const handler = async (textAndSourceLanguage) => { const translateClient = new TranslateClient({}); const translateCommand = new TranslateTextCommand({ SourceLanguageCode: textAndSourceLanguage.source_language_code, TargetLanguageCode: "en", Text: textAndSourceLanguage.extracted_text, }); const { TranslatedText } = await translateClient.send(translateCommand); return { translated_text: TranslatedText }; };
此範例中使用的服務
Amazon Comprehend
Lambda
Amazon Polly
Amazon Textract
Amazon Translate
-