本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
檢測或分析多頁文檔中的文本
此過程介紹如何使用 Amazon Amazon Textract 檢測操作、存儲在 Amazon S3 存儲桶中的文檔、Amazon SNS 主題和 Amazon SQS 隊列來檢測或分析多頁文檔中的文本。多頁文件處理是一種非同步操作。如需詳細資訊,請參閱 調用 Amazon Textract 異步操作。
您可以選擇希望代碼執行的處理類型:文本檢測、文本分析或費用分析。
處理結果返回在Block對象,這些對象會根據您使用的處理類型而定。
要檢測多頁文檔中的文本或分析,請執行以下操作:
-
建立 Amazon SNS 主題和 Amazon SQS 佇列。
-
訂佇列。
-
將許可提供給主題,以將訊息傳送至佇列。
-
開始處理文檔。為您選擇的分析類型使用適當的操作:
-
StartDocumentTextDetection用於文本檢測任務。
-
StartDocumentAnalysis用於文本分析任務。
-
StartExpenseAnalysis用於支出分析任務。
-
-
從 Amazon SQS 佇列取得完成狀態。示例代碼跟蹤作業標識符 (
JobId
),這是由Start
operation. 它只會顯示從完成狀態中讀取後,只會顯示相符的工作識別碼相符的結果。如果其他應用程式使用相同的佇列和主題,這麼做非常重要。為了方便起見,此範例刪除不符合的任務。考慮將已刪除的任務添加到 Amazon SQS 無效字母佇列以供進一步調查。 -
通過調用所選分析類型的相應操作來獲取並顯示處理結果:
-
GetDocumentTextDetection用於文本檢測任務。
-
GetDocumentAnalysis用於文本分析任務。
-
GetExpenseAnalysis用於支出分析任務。
-
-
刪除 Amazon SNS 主題和 Amazon SQS 佇列。
執行異步操作
此程序的範例程式碼以 Java、Python 提供,AWS CLI。開始之前,請先安裝適當的AWS開發套件。如需詳細資訊,請參閱 步驟 2:設定AWS CLI和AWS開發套件。
檢測或分析多頁文檔中的文本
-
請配置用户對 Amazon Textract 的訪問,以及配置 Amazon Textract 存取 Amazon SNS 的 Amazon Textract 存取。如需詳細資訊,請參閱 為異步操作配置 Amazon Textract。若要完成此程序,您需要 PDF 格式的多頁檔案。請跳過步驟 3 — 6,因為範例程式碼會建立並設定 Amazon SNS 主題和 Amazon SQS 佇列。如果壓縮t在 CLI 範例中,您不需要設定 SQS 佇列。
-
將 PDF 或 TIFF 格式的多頁文件上傳至 Amazon S3 儲存貯體。(也可以處理 JPEG、PNG、TIFF 或 PDF 格式的單頁文檔)。
如需說明,請參閱「」將對象上傳至 Amazon S3中的Amazon Simple Storage Service 用户指南。
-
使用下列內容AWS SDK for Java、SDK for Python (Boto3) 或AWS CLI代碼來檢測多頁文檔中的文本或分析文本。在 中
main
函數:-
替換
roleArn
使用您保存在的 IAM 角色 ARN授予 Amazon Textract 對您的 Amazon SNS 主題的訪問權限。 -
替換
bucket
和document
以您在步驟 2 中指定的儲存貯體與影片檔名稱。 -
取代
type
的輸入參數ProcessDocument
函數與您想執行的處理類型。使用ProcessType.DETECTION
來檢測文本。使用ProcessType.ANALYSIS
來分析文本。 -
對於 Python 示例,將
region_name
與您的客户端所在的區域一起運行。
對於AWS CLI例如,請執行以下操作:
-
在調用StartDocumentTextDetection中,替換
bucket-name
以您的 S3 儲存貯體名稱取代file-name
以您在步驟 2 中指定的檔案名稱來取代。通過替換region-name
與您所在地區的名稱相同。請注意,CLI 示例沒有使用 SQS。 -
在調用GetDocumentTextDetection更換
job-id-number
使用job-id
返回的StartDocumentTextDetection。通過替換region-name
與您所在地區的名稱相同。
- Java
-
package com.amazonaws.samples; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.DocumentLocation; import com.amazonaws.services.textract.model.DocumentMetadata; import com.amazonaws.services.textract.model.GetDocumentAnalysisRequest; import com.amazonaws.services.textract.model.GetDocumentAnalysisResult; import com.amazonaws.services.textract.model.GetDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.GetDocumentTextDetectionResult; import com.amazonaws.services.textract.model.NotificationChannel; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.StartDocumentAnalysisRequest; import com.amazonaws.services.textract.model.StartDocumentAnalysisResult; import com.amazonaws.services.textract.model.StartDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.StartDocumentTextDetectionResult; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper;; public class DocumentProcessor { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String document = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonTextract textract = null; public enum ProcessType { DETECTION,ANALYSIS } public static void main(String[] args) throws Exception { String document = "document"; String bucket = "bucket"; String roleArn="role"; sns = AmazonSNSClientBuilder.defaultClient(); sqs= AmazonSQSClientBuilder.defaultClient(); textract=AmazonTextractClientBuilder.defaultClient(); CreateTopicandQueue(); ProcessDocument(bucket,document,roleArn,ProcessType.DETECTION); DeleteTopicandQueue(); System.out.println("Done!"); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonTextractTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonTextractQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } //Starts the processing of the input document. static void ProcessDocument(String inBucket, String inDocument, String inRoleArn, ProcessType type) throws Exception { bucket=inBucket; document=inDocument; roleArn=inRoleArn; switch(type) { case DETECTION: StartDocumentTextDetection(bucket, document); System.out.println("Processing type: Detection"); break; case ANALYSIS: StartDocumentAnalysis(bucket,document); System.out.println("Processing type: Analysis"); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ switch(type) { case DETECTION: GetDocumentTextDetectionResults(); break; case ANALYSIS: GetDocumentAnalysisResults(); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } } else{ System.out.println("Document analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing document"); } private static void StartDocumentTextDetection(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentTextDetectionRequest req = new StartDocumentTextDetectionRequest() .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("DetectingText") .withNotificationChannel(channel); StartDocumentTextDetectionResult startDocumentTextDetectionResult = textract.startDocumentTextDetection(req); startJobId=startDocumentTextDetectionResult.getJobId(); } //Gets the results of processing started by StartDocumentTextDetection private static void GetDocumentTextDetectionResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentTextDetectionResult response=null; Boolean finished=false; while (finished==false) { GetDocumentTextDetectionRequest documentTextDetectionRequest= new GetDocumentTextDetectionRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentTextDetection(documentTextDetectionRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks information List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } private static void StartDocumentAnalysis(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentAnalysisRequest req = new StartDocumentAnalysisRequest() .withFeatureTypes("TABLES","FORMS") .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("AnalyzingText") .withNotificationChannel(channel); StartDocumentAnalysisResult startDocumentAnalysisResult = textract.startDocumentAnalysis(req); startJobId=startDocumentAnalysisResult.getJobId(); } //Gets the results of processing started by StartDocumentAnalysis private static void GetDocumentAnalysisResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentAnalysisResult response=null; Boolean finished=false; //loops until pagination token is null while (finished==false) { GetDocumentAnalysisRequest documentAnalysisRequest= new GetDocumentAnalysisRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentAnalysis(documentAnalysisRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks, confidence and detection times List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } //Displays Block information for text detection and text analysis private static void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println("\tDetected text: " + block.getText()); System.out.println("\tType: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println("\tConfidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println("\tCell information:"); System.out.println("\t\tColumn: " + block.getColumnIndex()); System.out.println("\t\tRow: " + block.getRowIndex()); System.out.println("\t\tColumn span: " + block.getColumnSpan()); System.out.println("\t\tRow span: " + block.getRowSpan()); } System.out.println("\tRelationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println("\t\tType: " + relationship.getType()); System.out.println("\t\tIDs: " + relationship.getIds().toString()); } } else { System.out.println("\t\tNo related Blocks"); } System.out.println("\tGeometry"); System.out.println("\t\tBounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println("\t\tPolygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println("\tEntity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println("\t\tEntity Type: " + entityType); } } else { System.out.println("\t\tNo entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println("\tPage: " + block.getPage()); System.out.println(); } }
- AWS CLI
-
這一個AWS CLI命令會開始非同步偵測指定文檔中的文字。其會傳回
job-id
來取代偵測結果。aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket-name
\",\"Name\":\"file-name
\"}}" --regionregion-name
這一個AWS CLI命令返回 Amazon Textract 異步操作的結果,如果提供
job-id
。aws textract get-document-text-detection --region
region-name
--job-idjob-id-number
如果您正在 Windows 設備上訪問 CLI,請使用雙引號而不是單引號,並用反斜槓(即\)轉義內部雙引號以解決您可能遇到的任何解析器錯誤。例如,請參下列內容
aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket
\",\"Name\":\"document
\"}}" --regionregion-name
- Python
-
import boto3 import json import sys import time class ProcessType: DETECTION = 1 ANALYSIS = 2 class DocumentProcessor: jobId = '' region_name = '' roleArn = '' bucket = '' document = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, document, region): self.roleArn = role self.bucket = bucket self.document = document self.region_name = region self.textract = boto3.client('textract', region_name=self.region_name) self.sqs = boto3.client('sqs') self.sns = boto3.client('sns') def ProcessDocument(self, type): jobFound = False self.processType = type validType = False # Determine which type of processing to perform if self.processType == ProcessType.DETECTION: response = self.textract.start_document_text_detection( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Detection') validType = True if self.processType == ProcessType.ANALYSIS: response = self.textract.start_document_analysis( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, FeatureTypes=["TABLES", "FORMS"], NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Analysis') validType = True if validType == False: print("Invalid processing type. Choose Detection or Analysis.") return print('Start Job Id: ' + response['JobId']) dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) textMessage = json.loads(notification['Message']) print(textMessage['JobId']) print(textMessage['Status']) if str(textMessage['JobId']) == response['JobId']: print('Matching Job Found:' + textMessage['JobId']) jobFound = True self.GetResults(textMessage['JobId']) self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(textMessage['JobId']) + ' : ' + str(response['JobId'])) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) print('Done!') def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonTextractTopic" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonTextractQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) # Display information about a block def DisplayBlockInfo(self, block): print("Block Id: " + block['Id']) print("Type: " + block['BlockType']) if 'EntityTypes' in block: print('EntityTypes: {}'.format(block['EntityTypes'])) if 'Text' in block: print("Text: " + block['Text']) if block['BlockType'] != 'PAGE': print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%") print('Page: {}'.format(block['Page'])) if block['BlockType'] == 'CELL': print('Cell Information') print('\tColumn: {} '.format(block['ColumnIndex'])) print('\tRow: {}'.format(block['RowIndex'])) print('\tColumn span: {} '.format(block['ColumnSpan'])) print('\tRow span: {}'.format(block['RowSpan'])) if 'Relationships' in block: print('\tRelationships: {}'.format(block['Relationships'])) print('Geometry') print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('\tPolygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] == 'SELECTED': print('Selected') else: print('Not selected') def GetResults(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if self.processType == ProcessType.ANALYSIS: if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) if self.processType == ProcessType.DETECTION: if paginationToken == None: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) blocks = response['Blocks'] print('Detected Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def GetResultsDocumentAnalysis(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) # Get the text blocks blocks = response['Blocks'] print('Analyzed Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def main(): roleArn = '' bucket = '' document = '' region_name = '' analyzer = DocumentProcessor(roleArn, bucket, document, region_name) analyzer.CreateTopicandQueue() analyzer.ProcessDocument(ProcessType.DETECTION) analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
- Node.JS
-
在本範例中,將
roleArn
使用您保存在的 IAM 角色 ARN授予 Amazon Textract 對您的 Amazon SNS 主題的訪問權限。替換bucket
和document
以您在上述步驟 2 中指定的儲存貯體與影片檔名稱。替換processType
與您想要在輸入文檔上使用的處理類型。最後,將REGION
與您的客户端所在的區域一起運行。// snippet-start:[sqs.JavaScript.queues.createQueueV3] // Import required AWS SDK clients and commands for Node.js import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { TextractClient, StartDocumentTextDetectionCommand, StartDocumentAnalysisCommand, GetDocumentAnalysisCommand, GetDocumentTextDetectionCommand, DocumentMetadata } from "@aws-sdk/client-textract"; import { stdout } from "process"; // Set the AWS Region. const REGION = "us-east-1"; //e.g. "us-east-1" // Create SNS service object. const sqsClient = new SQSClient({ region: REGION }); const snsClient = new SNSClient({ region: REGION }); const textractClient = new TextractClient({ region: REGION }); // Set bucket and video variables const bucket = "bucket-name"; const documentName = "document-name"; const roleArn = "role-arn" const processType = "DETECTION" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonTextractExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonTextractQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; // Process a document based on operation type const processDocumment = async (type, bucket, videoName, roleArn, sqsQueueUrl, snsTopicArn) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 var processType = type var validType = false if (processType == "DETECTION"){ var response = await textractClient.send(new StartDocumentTextDetectionCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Detection") validType = true } if (processType == "ANALYSIS"){ var response = await textractClient.send(new StartDocumentAnalysisCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Analysis") validType = true } if (validType == false){ console.log("Invalid processing type. Choose Detection or Analysis.") return } // while not found, continue to poll for response console.log(`Start Job ID: ${response.JobId}`) while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true // GET RESUlTS FUNCTION HERE var operationResults = await GetResults(processType, rekMessage.JobId) //GET RESULTS FUMCTION HERE console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } console.log("Done!") } }catch (err) { console.log("Error", err); } } // Create the SNS topic and SQS Queue const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } } const deleteTopicAndQueue = async (sqsQueueUrlArg, snsTopicArnArg) => { const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsQueueUrlArg})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: snsTopicArnArg})); console.log("Successfully deleted.") } const displayBlockInfo = async (block) => { console.log(`Block ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if (String(block).includes(String("EntityTypes"))){ console.log(`EntityTypes: ${block.EntityTypes}`) } if (String(block).includes(String("Text"))){ console.log(`EntityTypes: ${block.Text}`) } if (!String(block.BlockType).includes('PAGE')){ console.log(`Confidence: ${block.Confidence}`) } console.log(`Page: ${block.Page}`) if (String(block.BlockType).includes("CELL")){ console.log("Cell Information") console.log(`Column: ${block.ColumnIndex}`) console.log(`Row: ${block.RowIndex}`) console.log(`Column Span: ${block.ColumnSpan}`) console.log(`Row Span: ${block.RowSpan}`) if (String(block).includes("Relationships")){ console.log(`Relationships: ${block.Relationships}`) } } console.log("Geometry") console.log(`Bounding Box: ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(`Polygon: ${JSON.stringify(block.Geometry.Polygon)}`) if (String(block.BlockType).includes('SELECTION_ELEMENT')){ console.log('Selection Element detected:') if (String(block.SelectionStatus).includes('SELECTED')){ console.log('Selected') } else { console.log('Not Selected') } } } const GetResults = async (processType, JobID) => { var maxResults = 1000 var paginationToken = null var finished = false while (finished == false){ var response = null if (processType == 'ANALYSIS'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } if(processType == 'DETECTION'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } await new Promise(resolve => setTimeout(resolve, 5000)); console.log("Detected Documented Text") console.log(response) //console.log(Object.keys(response)) console.log(typeof(response)) var blocks = (await response).Blocks console.log(blocks) console.log(typeof(blocks)) var docMetadata = (await response).DocumentMetadata var blockString = JSON.stringify(blocks) var parsed = JSON.parse(JSON.stringify(blocks)) console.log(Object.keys(blocks)) console.log(`Pages: ${docMetadata.Pages}`) blocks.forEach((block)=> { displayBlockInfo(block) console.log() console.log() }) //console.log(blocks[0].BlockType) //console.log(blocks[1].BlockType) if(String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } } } // DELETE TOPIC AND QUEUE const main = async () => { var sqsAndTopic = await createTopicandQueue(); var process = await processDocumment(processType, bucket, documentName, roleArn, sqsAndTopic[0], sqsAndTopic[1]) var deleteResults = await deleteTopicAndQueue(sqsAndTopic[0], sqsAndTopic[1]) } main()
-
-
執行程式碼。此操作可能需要一些時間來完成。完成之後,將顯示偵測到或分析的文字塊清單。