Simulate noise with OpenQASM 3.0
To simulate noise with OpenQASM3, you use pragma instructions to add noise operators. For example, to simulate the noisy version of the GHZ program provided previously, you can submit the following OpenQASM program.
// ghz.qasm // Prepare a GHZ state OPENQASM 3; qubit[3] q; bit[3] c; h q[0]; #pragma braket noise depolarizing(0.75) q[0] cnot q[0], q[1]; #pragma braket noise depolarizing(0.75) q[0] #pragma braket noise depolarizing(0.75) q[1] cnot q[1], q[2]; #pragma braket noise depolarizing(0.75) q[0] #pragma braket noise depolarizing(0.75) q[1] c = measure q;
Specifications for all supported pragma noise operators are provided in the following list.
#pragma braket noise bit_flip(<float in [0,1/2]>) <qubit> #pragma braket noise phase_flip(<float in [0,1/2]>) <qubit> #pragma braket noise pauli_channel(<float>, <float>, <float>) <qubit> #pragma braket noise depolarizing(<float in [0,3/4]>) <qubit> #pragma braket noise two_qubit_depolarizing(<float in [0,15/16]>) <qubit>, <qubit> #pragma braket noise two_qubit_dephasing(<float in [0,3/4]>) <qubit>, <qubit> #pragma braket noise amplitude_damping(<float in [0,1]>) <qubit> #pragma braket noise generalized_amplitude_damping(<float in [0,1]> <float in [0,1]>) <qubit> #pragma braket noise phase_damping(<float in [0,1]>) <qubit> #pragma braket noise kraus([[<complex m0_00>, ], ...], [[<complex m1_00>, ], ...], ...) <qubit>[, <qubit>] // maximum of 2 qubits and maximum of 4 matrices for 1 qubit, 16 for 2
Kraus operator
In order to generate a Kraus operator, you can iterate through a list of matrices, printing each element of the matrix as a complex expression.
When using Kraus operators, remember the following:
-
The number of qubits must not exceed 2. The current definition in the schemas
sets this limit. -
The length of the argument list must be a multiple of 8. This means it must be composed only of 2x2 matrices.
-
The total length does not exceed 22*num_qubits matrices. This means 4 matrices for 1 qubit and 16 for 2 qubits.
-
All supplied matrices are completely positive trace preserving (CPTP)
. -
The product of the Kraus operators with their transpose conjugates need to add up to an identity matrix.