Interface SageMakerCreateTrainingJobProps
- All Superinterfaces:
software.amazon.jsii.JsiiSerializable
,TaskStateBaseProps
- All Known Implementing Classes:
SageMakerCreateTrainingJobProps.Jsii$Proxy
Example:
SageMakerCreateTrainingJob.Builder.create(this, "TrainSagemaker") .trainingJobName(JsonPath.stringAt("$.JobName")) .algorithmSpecification(AlgorithmSpecification.builder() .algorithmName("BlazingText") .trainingInputMode(InputMode.FILE) .build()) .inputDataConfig(List.of(Channel.builder() .channelName("train") .dataSource(DataSource.builder() .s3DataSource(S3DataSource.builder() .s3DataType(S3DataType.S3_PREFIX) .s3Location(S3Location.fromJsonExpression("$.S3Bucket")) .build()) .build()) .build())) .outputDataConfig(OutputDataConfig.builder() .s3OutputLocation(S3Location.fromBucket(Bucket.fromBucketName(this, "Bucket", "amzn-s3-demo-bucket"), "myoutputpath")) .build()) .resourceConfig(ResourceConfig.builder() .instanceCount(1) .instanceType(new InstanceType(JsonPath.stringAt("$.InstanceType"))) .volumeSize(Size.gibibytes(50)) .build()) // optional: default is 1 instance of EC2 `M4.XLarge` with `10GB` volume .stoppingCondition(StoppingCondition.builder() .maxRuntime(Duration.hours(2)) .build()) .build();
-
Nested Class Summary
Modifier and TypeInterfaceDescriptionstatic final class
A builder forSageMakerCreateTrainingJobProps
static final class
An implementation forSageMakerCreateTrainingJobProps
-
Method Summary
Modifier and TypeMethodDescriptionbuilder()
Identifies the training algorithm to use.default Boolean
Isolates the training container.Environment variables to set in the Docker container.Algorithm-specific parameters that influence the quality of the model.Describes the various datasets (e.g.Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training.default ResourceConfig
Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.default IRole
getRole()
Role for the Training Job.default StoppingCondition
Sets a time limit for training.getTags()
Tags to be applied to the train job.Training Job Name.default VpcConfig
Specifies the VPC that you want your training job to connect to.Methods inherited from interface software.amazon.jsii.JsiiSerializable
$jsii$toJson
Methods inherited from interface software.amazon.awscdk.services.stepfunctions.TaskStateBaseProps
getComment, getCredentials, getHeartbeat, getHeartbeatTimeout, getInputPath, getIntegrationPattern, getOutputPath, getResultPath, getResultSelector, getStateName, getTaskTimeout, getTimeout
-
Method Details
-
getAlgorithmSpecification
Identifies the training algorithm to use. -
getOutputDataConfig
Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. -
getTrainingJobName
Training Job Name. -
getEnableNetworkIsolation
Isolates the training container.No inbound or outbound network calls can be made to or from the training container.
Default: false
-
getEnvironment
Environment variables to set in the Docker container.Default: - No environment variables
-
getHyperparameters
Algorithm-specific parameters that influence the quality of the model.Set hyperparameters before you start the learning process. For a list of hyperparameters provided by Amazon SageMaker
Default: - No hyperparameters
- See Also:
-
getInputDataConfig
Describes the various datasets (e.g. train, validation, test) and the Amazon S3 location where stored.Default: - No inputDataConfig
-
getResourceConfig
Specifies the resources, ML compute instances, and ML storage volumes to deploy for model training.Default: - 1 instance of EC2 `M4.XLarge` with `10GB` volume
-
getRole
Role for the Training Job.The role must be granted all necessary permissions for the SageMaker training job to be able to operate.
See https://docs.aws.amazon.com/fr_fr/sagemaker/latest/dg/sagemaker-roles.html#sagemaker-roles-createtrainingjob-perms
Default: - a role will be created.
-
getStoppingCondition
Sets a time limit for training.Default: - max runtime of 1 hour
-
getTags
Tags to be applied to the train job.Default: - No tags
-
getVpcConfig
Specifies the VPC that you want your training job to connect to.Default: - No VPC
-
builder
-