There are more AWS SDK examples available in the AWS Doc SDK Examples
Aurora examples using SDK for Python (Boto3)
The following code examples show you how to perform actions and implement common scenarios by using the AWS SDK for Python (Boto3) with Aurora.
Basics are code examples that show you how to perform the essential operations within a service.
Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.
Scenarios are code examples that show you how to accomplish specific tasks by calling multiple functions within a service or combined with other AWS services.
Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.
Get started
The following code examples show how to get started using Aurora.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. import boto3 # Create an RDS client rds = boto3.client("rds") # Create a paginator for the describe_db_clusters operation paginator = rds.get_paginator("describe_db_clusters") # Use the paginator to get a list of DB clusters response_iterator = paginator.paginate( PaginationConfig={ "PageSize": 50, # Adjust PageSize as needed "StartingToken": None, } ) # Iterate through the pages of the response clusters_found = False for page in response_iterator: if "DBClusters" in page and page["DBClusters"]: clusters_found = True print("Here are your RDS Aurora clusters:") for cluster in page["DBClusters"]: print( f"Cluster ID: {cluster['DBClusterIdentifier']}, Engine: {cluster['Engine']}" ) if not clusters_found: print("No clusters found!")
-
For API details, see DescribeDBClusters in AWS SDK for Python (Boto3) API Reference.
-
Basics
The following code example shows how to:
Create a custom Aurora DB cluster parameter group and set parameter values.
Create a DB cluster that uses the parameter group.
Create a DB instance that contains a database.
Take a snapshot of the DB cluster, then clean up resources.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. Run an interactive scenario at a command prompt.
class AuroraClusterScenario: """Runs a scenario that shows how to get started using Aurora DB clusters.""" def __init__(self, aurora_wrapper): """ :param aurora_wrapper: An object that wraps Aurora DB cluster actions. """ self.aurora_wrapper = aurora_wrapper def create_parameter_group(self, db_engine, parameter_group_name): """ Shows how to get available engine versions for a specified database engine and create a DB cluster parameter group that is compatible with a selected engine family. :param db_engine: The database engine to use as a basis. :param parameter_group_name: The name given to the newly created parameter group. :return: The newly created parameter group. """ print( f"Checking for an existing DB cluster parameter group named {parameter_group_name}." ) parameter_group = self.aurora_wrapper.get_parameter_group(parameter_group_name) if parameter_group is None: print(f"Getting available database engine versions for {db_engine}.") engine_versions = self.aurora_wrapper.get_engine_versions(db_engine) families = list({ver["DBParameterGroupFamily"] for ver in engine_versions}) family_index = q.choose("Which family do you want to use? ", families) print(f"Creating a DB cluster parameter group.") self.aurora_wrapper.create_parameter_group( parameter_group_name, families[family_index], "Example parameter group." ) parameter_group = self.aurora_wrapper.get_parameter_group( parameter_group_name ) print(f"Parameter group {parameter_group['DBClusterParameterGroupName']}:") pp(parameter_group) print("-" * 88) return parameter_group def set_user_parameters(self, parameter_group_name): """ Shows how to get the parameters contained in a custom parameter group and update some of the parameter values in the group. :param parameter_group_name: The name of the parameter group to query and modify. """ print("Let's set some parameter values in your parameter group.") auto_inc_parameters = self.aurora_wrapper.get_parameters( parameter_group_name, name_prefix="auto_increment" ) update_params = [] for auto_inc in auto_inc_parameters: if auto_inc["IsModifiable"] and auto_inc["DataType"] == "integer": print(f"The {auto_inc['ParameterName']} parameter is described as:") print(f"\t{auto_inc['Description']}") param_range = auto_inc["AllowedValues"].split("-") auto_inc["ParameterValue"] = str( q.ask( f"Enter a value between {param_range[0]} and {param_range[1]}: ", q.is_int, q.in_range(int(param_range[0]), int(param_range[1])), ) ) update_params.append(auto_inc) self.aurora_wrapper.update_parameters(parameter_group_name, update_params) print( "You can get a list of parameters you've set by specifying a source of 'user'." ) user_parameters = self.aurora_wrapper.get_parameters( parameter_group_name, source="user" ) pp(user_parameters) print("-" * 88) def create_cluster(self, cluster_name, db_engine, db_name, parameter_group): """ Shows how to create an Aurora DB cluster that contains a database of a specified type. The database is also configured to use a custom DB cluster parameter group. :param cluster_name: The name given to the newly created DB cluster. :param db_engine: The engine of the created database. :param db_name: The name given to the created database. :param parameter_group: The parameter group that is associated with the DB cluster. :return: The newly created DB cluster. """ print("Checking for an existing DB cluster.") cluster = self.aurora_wrapper.get_db_cluster(cluster_name) if cluster is None: admin_username = q.ask( "Enter an administrator user name for the database: ", q.non_empty ) admin_password = q.ask( "Enter a password for the administrator (at least 8 characters): ", q.non_empty, ) engine_versions = self.aurora_wrapper.get_engine_versions( db_engine, parameter_group["DBParameterGroupFamily"] ) engine_choices = [ ver["EngineVersionDescription"] for ver in engine_versions ] print("The available engines for your parameter group are:") engine_index = q.choose("Which engine do you want to use? ", engine_choices) print( f"Creating DB cluster {cluster_name} and database {db_name}.\n" f"The DB cluster is configured to use\n" f"your custom parameter group {parameter_group['DBClusterParameterGroupName']}\n" f"and selected engine {engine_choices[engine_index]}.\n" f"This typically takes several minutes." ) cluster = self.aurora_wrapper.create_db_cluster( cluster_name, parameter_group["DBClusterParameterGroupName"], db_name, db_engine, engine_versions[engine_index]["EngineVersion"], admin_username, admin_password, ) while cluster.get("Status") != "available": wait(30) cluster = self.aurora_wrapper.get_db_cluster(cluster_name) print("Cluster created and available.\n") print("Cluster data:") pp(cluster) print("-" * 88) return cluster def create_instance(self, cluster): """ Shows how to create a DB instance in an existing Aurora DB cluster. A new DB cluster contains no DB instances, so you must add one. The first DB instance that is added to a DB cluster defaults to a read-write DB instance. :param cluster: The DB cluster where the DB instance is added. :return: The newly created DB instance. """ print("Checking for an existing database instance.") cluster_name = cluster["DBClusterIdentifier"] db_inst = self.aurora_wrapper.get_db_instance(cluster_name) if db_inst is None: print("Let's create a database instance in your DB cluster.") print("First, choose a DB instance type:") inst_opts = self.aurora_wrapper.get_orderable_instances( cluster["Engine"], cluster["EngineVersion"] ) inst_choices = list( { opt["DBInstanceClass"] + ", storage type: " + opt["StorageType"] for opt in inst_opts } ) inst_index = q.choose( "Which DB instance class do you want to use? ", inst_choices ) print( f"Creating a database instance. This typically takes several minutes." ) db_inst = self.aurora_wrapper.create_instance_in_cluster( cluster_name, cluster_name, cluster["Engine"], inst_opts[inst_index]["DBInstanceClass"], ) while db_inst.get("DBInstanceStatus") != "available": wait(30) db_inst = self.aurora_wrapper.get_db_instance(cluster_name) print("Instance data:") pp(db_inst) print("-" * 88) return db_inst @staticmethod def display_connection(cluster): """ Displays connection information about an Aurora DB cluster and tips on how to connect to it. :param cluster: The DB cluster to display. """ print( "You can now connect to your database using your favorite MySql client.\n" "One way to connect is by using the 'mysql' shell on an Amazon EC2 instance\n" "that is running in the same VPC as your database cluster. Pass the endpoint,\n" "port, and administrator user name to 'mysql' and enter your password\n" "when prompted:\n" ) print( f"\n\tmysql -h {cluster['Endpoint']} -P {cluster['Port']} -u {cluster['MasterUsername']} -p\n" ) print( "For more information, see the User Guide for Aurora:\n" "\thttps://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_GettingStartedAurora.CreatingConnecting.Aurora.html#CHAP_GettingStartedAurora.Aurora.Connect" ) print("-" * 88) def create_snapshot(self, cluster_name): """ Shows how to create a DB cluster snapshot and wait until it's available. :param cluster_name: The name of a DB cluster to snapshot. """ if q.ask( "Do you want to create a snapshot of your DB cluster (y/n)? ", q.is_yesno ): snapshot_id = f"{cluster_name}-{uuid.uuid4()}" print( f"Creating a snapshot named {snapshot_id}. This typically takes a few minutes." ) snapshot = self.aurora_wrapper.create_cluster_snapshot( snapshot_id, cluster_name ) while snapshot.get("Status") != "available": wait(30) snapshot = self.aurora_wrapper.get_cluster_snapshot(snapshot_id) pp(snapshot) print("-" * 88) def cleanup(self, db_inst, cluster, parameter_group): """ Shows how to clean up a DB instance, DB cluster, and DB cluster parameter group. Before the DB cluster parameter group can be deleted, all associated DB instances and DB clusters must first be deleted. :param db_inst: The DB instance to delete. :param cluster: The DB cluster to delete. :param parameter_group: The DB cluster parameter group to delete. """ cluster_name = cluster["DBClusterIdentifier"] parameter_group_name = parameter_group["DBClusterParameterGroupName"] if q.ask( "\nDo you want to delete the database instance, DB cluster, and parameter " "group (y/n)? ", q.is_yesno, ): print(f"Deleting database instance {db_inst['DBInstanceIdentifier']}.") self.aurora_wrapper.delete_db_instance(db_inst["DBInstanceIdentifier"]) print(f"Deleting database cluster {cluster_name}.") self.aurora_wrapper.delete_db_cluster(cluster_name) print( "Waiting for the DB instance and DB cluster to delete.\n" "This typically takes several minutes." ) while db_inst is not None or cluster is not None: wait(30) if db_inst is not None: db_inst = self.aurora_wrapper.get_db_instance( db_inst["DBInstanceIdentifier"] ) if cluster is not None: cluster = self.aurora_wrapper.get_db_cluster( cluster["DBClusterIdentifier"] ) print(f"Deleting parameter group {parameter_group_name}.") self.aurora_wrapper.delete_parameter_group(parameter_group_name) def run_scenario(self, db_engine, parameter_group_name, cluster_name, db_name): print("-" * 88) print( "Welcome to the Amazon Relational Database Service (Amazon RDS) get started\n" "with Aurora DB clusters demo." ) print("-" * 88) parameter_group = self.create_parameter_group(db_engine, parameter_group_name) self.set_user_parameters(parameter_group_name) cluster = self.create_cluster(cluster_name, db_engine, db_name, parameter_group) wait(5) db_inst = self.create_instance(cluster) self.display_connection(cluster) self.create_snapshot(cluster_name) self.cleanup(db_inst, cluster, parameter_group) print("\nThanks for watching!") print("-" * 88) if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: scenario = AuroraClusterScenario(AuroraWrapper.from_client()) scenario.run_scenario( "aurora-mysql", "doc-example-cluster-parameter-group", "doc-example-aurora", "docexampledb", ) except Exception: logging.exception("Something went wrong with the demo.")
Define functions that are called by the scenario to manage Aurora actions.
class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_parameter_group(self, parameter_group_name): """ Gets a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to retrieve. :return: The requested parameter group. """ try: response = self.rds_client.describe_db_cluster_parameter_groups( DBClusterParameterGroupName=parameter_group_name ) parameter_group = response["DBClusterParameterGroups"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBParameterGroupNotFound": logger.info("Parameter group %s does not exist.", parameter_group_name) else: logger.error( "Couldn't get parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return parameter_group def create_parameter_group( self, parameter_group_name, parameter_group_family, description ): """ Creates a DB cluster parameter group that is based on the specified parameter group family. :param parameter_group_name: The name of the newly created parameter group. :param parameter_group_family: The family that is used as the basis of the new parameter group. :param description: A description given to the parameter group. :return: Data about the newly created parameter group. """ try: response = self.rds_client.create_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name, DBParameterGroupFamily=parameter_group_family, Description=description, ) except ClientError as err: logger.error( "Couldn't create parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response def delete_parameter_group(self, parameter_group_name): """ Deletes a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to delete. :return: Data about the parameter group. """ try: response = self.rds_client.delete_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name ) except ClientError as err: logger.error( "Couldn't delete parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response def get_parameters(self, parameter_group_name, name_prefix="", source=None): """ Gets the parameters that are contained in a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to query. :param name_prefix: When specified, the retrieved list of parameters is filtered to contain only parameters that start with this prefix. :param source: When specified, only parameters from this source are retrieved. For example, a source of 'user' retrieves only parameters that were set by a user. :return: The list of requested parameters. """ try: kwargs = {"DBClusterParameterGroupName": parameter_group_name} if source is not None: kwargs["Source"] = source parameters = [] paginator = self.rds_client.get_paginator("describe_db_cluster_parameters") for page in paginator.paginate(**kwargs): parameters += [ p for p in page["Parameters"] if p["ParameterName"].startswith(name_prefix) ] except ClientError as err: logger.error( "Couldn't get parameters for %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return parameters def update_parameters(self, parameter_group_name, update_parameters): """ Updates parameters in a custom DB cluster parameter group. :param parameter_group_name: The name of the parameter group to update. :param update_parameters: The parameters to update in the group. :return: Data about the modified parameter group. """ try: response = self.rds_client.modify_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name, Parameters=update_parameters, ) except ClientError as err: logger.error( "Couldn't update parameters in %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response def get_db_cluster(self, cluster_name): """ Gets data about an Aurora DB cluster. :param cluster_name: The name of the DB cluster to retrieve. :return: The retrieved DB cluster. """ try: response = self.rds_client.describe_db_clusters( DBClusterIdentifier=cluster_name ) cluster = response["DBClusters"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBClusterNotFoundFault": logger.info("Cluster %s does not exist.", cluster_name) else: logger.error( "Couldn't verify the existence of DB cluster %s. Here's why: %s: %s", cluster_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return cluster def create_db_cluster( self, cluster_name, parameter_group_name, db_name, db_engine, db_engine_version, admin_name, admin_password, ): """ Creates a DB cluster that is configured to use the specified parameter group. The newly created DB cluster contains a database that uses the specified engine and engine version. :param cluster_name: The name of the DB cluster to create. :param parameter_group_name: The name of the parameter group to associate with the DB cluster. :param db_name: The name of the database to create. :param db_engine: The database engine of the database that is created, such as MySql. :param db_engine_version: The version of the database engine. :param admin_name: The user name of the database administrator. :param admin_password: The password of the database administrator. :return: The newly created DB cluster. """ try: response = self.rds_client.create_db_cluster( DatabaseName=db_name, DBClusterIdentifier=cluster_name, DBClusterParameterGroupName=parameter_group_name, Engine=db_engine, EngineVersion=db_engine_version, MasterUsername=admin_name, MasterUserPassword=admin_password, ) cluster = response["DBCluster"] except ClientError as err: logger.error( "Couldn't create database %s. Here's why: %s: %s", db_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return cluster def delete_db_cluster(self, cluster_name): """ Deletes a DB cluster. :param cluster_name: The name of the DB cluster to delete. """ try: self.rds_client.delete_db_cluster( DBClusterIdentifier=cluster_name, SkipFinalSnapshot=True ) logger.info("Deleted DB cluster %s.", cluster_name) except ClientError: logger.exception("Couldn't delete DB cluster %s.", cluster_name) raise def create_cluster_snapshot(self, snapshot_id, cluster_id): """ Creates a snapshot of a DB cluster. :param snapshot_id: The ID to give the created snapshot. :param cluster_id: The DB cluster to snapshot. :return: Data about the newly created snapshot. """ try: response = self.rds_client.create_db_cluster_snapshot( DBClusterSnapshotIdentifier=snapshot_id, DBClusterIdentifier=cluster_id ) snapshot = response["DBClusterSnapshot"] except ClientError as err: logger.error( "Couldn't create snapshot of %s. Here's why: %s: %s", cluster_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return snapshot def get_cluster_snapshot(self, snapshot_id): """ Gets a DB cluster snapshot. :param snapshot_id: The ID of the snapshot to retrieve. :return: The retrieved snapshot. """ try: response = self.rds_client.describe_db_cluster_snapshots( DBClusterSnapshotIdentifier=snapshot_id ) snapshot = response["DBClusterSnapshots"][0] except ClientError as err: logger.error( "Couldn't get DB cluster snapshot %s. Here's why: %s: %s", snapshot_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return snapshot def create_instance_in_cluster( self, instance_id, cluster_id, db_engine, instance_class ): """ Creates a database instance in an existing DB cluster. The first database that is created defaults to a read-write DB instance. :param instance_id: The ID to give the newly created DB instance. :param cluster_id: The ID of the DB cluster where the DB instance is created. :param db_engine: The database engine of a database to create in the DB instance. This must be compatible with the configured parameter group of the DB cluster. :param instance_class: The DB instance class for the newly created DB instance. :return: Data about the newly created DB instance. """ try: response = self.rds_client.create_db_instance( DBInstanceIdentifier=instance_id, DBClusterIdentifier=cluster_id, Engine=db_engine, DBInstanceClass=instance_class, ) db_inst = response["DBInstance"] except ClientError as err: logger.error( "Couldn't create DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst def get_engine_versions(self, engine, parameter_group_family=None): """ Gets database engine versions that are available for the specified engine and parameter group family. :param engine: The database engine to look up. :param parameter_group_family: When specified, restricts the returned list of engine versions to those that are compatible with this parameter group family. :return: The list of database engine versions. """ try: kwargs = {"Engine": engine} if parameter_group_family is not None: kwargs["DBParameterGroupFamily"] = parameter_group_family response = self.rds_client.describe_db_engine_versions(**kwargs) versions = response["DBEngineVersions"] except ClientError as err: logger.error( "Couldn't get engine versions for %s. Here's why: %s: %s", engine, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return versions def get_orderable_instances(self, db_engine, db_engine_version): """ Gets DB instance options that can be used to create DB instances that are compatible with a set of specifications. :param db_engine: The database engine that must be supported by the DB instance. :param db_engine_version: The engine version that must be supported by the DB instance. :return: The list of DB instance options that can be used to create a compatible DB instance. """ try: inst_opts = [] paginator = self.rds_client.get_paginator( "describe_orderable_db_instance_options" ) for page in paginator.paginate( Engine=db_engine, EngineVersion=db_engine_version ): inst_opts += page["OrderableDBInstanceOptions"] except ClientError as err: logger.error( "Couldn't get orderable DB instances. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return inst_opts def get_db_instance(self, instance_id): """ Gets data about a DB instance. :param instance_id: The ID of the DB instance to retrieve. :return: The retrieved DB instance. """ try: response = self.rds_client.describe_db_instances( DBInstanceIdentifier=instance_id ) db_inst = response["DBInstances"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBInstanceNotFound": logger.info("Instance %s does not exist.", instance_id) else: logger.error( "Couldn't get DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst def delete_db_instance(self, instance_id): """ Deletes a DB instance. :param instance_id: The ID of the DB instance to delete. :return: Data about the deleted DB instance. """ try: response = self.rds_client.delete_db_instance( DBInstanceIdentifier=instance_id, SkipFinalSnapshot=True, DeleteAutomatedBackups=True, ) db_inst = response["DBInstance"] except ClientError as err: logger.error( "Couldn't delete DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst
-
For API details, see the following topics in AWS SDK for Python (Boto3) API Reference.
-
Actions
The following code example shows how to use CreateDBCluster
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def create_db_cluster( self, cluster_name, parameter_group_name, db_name, db_engine, db_engine_version, admin_name, admin_password, ): """ Creates a DB cluster that is configured to use the specified parameter group. The newly created DB cluster contains a database that uses the specified engine and engine version. :param cluster_name: The name of the DB cluster to create. :param parameter_group_name: The name of the parameter group to associate with the DB cluster. :param db_name: The name of the database to create. :param db_engine: The database engine of the database that is created, such as MySql. :param db_engine_version: The version of the database engine. :param admin_name: The user name of the database administrator. :param admin_password: The password of the database administrator. :return: The newly created DB cluster. """ try: response = self.rds_client.create_db_cluster( DatabaseName=db_name, DBClusterIdentifier=cluster_name, DBClusterParameterGroupName=parameter_group_name, Engine=db_engine, EngineVersion=db_engine_version, MasterUsername=admin_name, MasterUserPassword=admin_password, ) cluster = response["DBCluster"] except ClientError as err: logger.error( "Couldn't create database %s. Here's why: %s: %s", db_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return cluster
-
For API details, see CreateDBCluster in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use CreateDBClusterParameterGroup
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def create_parameter_group( self, parameter_group_name, parameter_group_family, description ): """ Creates a DB cluster parameter group that is based on the specified parameter group family. :param parameter_group_name: The name of the newly created parameter group. :param parameter_group_family: The family that is used as the basis of the new parameter group. :param description: A description given to the parameter group. :return: Data about the newly created parameter group. """ try: response = self.rds_client.create_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name, DBParameterGroupFamily=parameter_group_family, Description=description, ) except ClientError as err: logger.error( "Couldn't create parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response
-
For API details, see CreateDBClusterParameterGroup in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use CreateDBClusterSnapshot
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def create_cluster_snapshot(self, snapshot_id, cluster_id): """ Creates a snapshot of a DB cluster. :param snapshot_id: The ID to give the created snapshot. :param cluster_id: The DB cluster to snapshot. :return: Data about the newly created snapshot. """ try: response = self.rds_client.create_db_cluster_snapshot( DBClusterSnapshotIdentifier=snapshot_id, DBClusterIdentifier=cluster_id ) snapshot = response["DBClusterSnapshot"] except ClientError as err: logger.error( "Couldn't create snapshot of %s. Here's why: %s: %s", cluster_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return snapshot
-
For API details, see CreateDBClusterSnapshot in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use CreateDBInstance
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def create_instance_in_cluster( self, instance_id, cluster_id, db_engine, instance_class ): """ Creates a database instance in an existing DB cluster. The first database that is created defaults to a read-write DB instance. :param instance_id: The ID to give the newly created DB instance. :param cluster_id: The ID of the DB cluster where the DB instance is created. :param db_engine: The database engine of a database to create in the DB instance. This must be compatible with the configured parameter group of the DB cluster. :param instance_class: The DB instance class for the newly created DB instance. :return: Data about the newly created DB instance. """ try: response = self.rds_client.create_db_instance( DBInstanceIdentifier=instance_id, DBClusterIdentifier=cluster_id, Engine=db_engine, DBInstanceClass=instance_class, ) db_inst = response["DBInstance"] except ClientError as err: logger.error( "Couldn't create DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst
-
For API details, see CreateDBInstance in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DeleteDBCluster
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def delete_db_cluster(self, cluster_name): """ Deletes a DB cluster. :param cluster_name: The name of the DB cluster to delete. """ try: self.rds_client.delete_db_cluster( DBClusterIdentifier=cluster_name, SkipFinalSnapshot=True ) logger.info("Deleted DB cluster %s.", cluster_name) except ClientError: logger.exception("Couldn't delete DB cluster %s.", cluster_name) raise
-
For API details, see DeleteDBCluster in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DeleteDBClusterParameterGroup
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def delete_parameter_group(self, parameter_group_name): """ Deletes a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to delete. :return: Data about the parameter group. """ try: response = self.rds_client.delete_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name ) except ClientError as err: logger.error( "Couldn't delete parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response
-
For API details, see DeleteDBClusterParameterGroup in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DeleteDBInstance
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def delete_db_instance(self, instance_id): """ Deletes a DB instance. :param instance_id: The ID of the DB instance to delete. :return: Data about the deleted DB instance. """ try: response = self.rds_client.delete_db_instance( DBInstanceIdentifier=instance_id, SkipFinalSnapshot=True, DeleteAutomatedBackups=True, ) db_inst = response["DBInstance"] except ClientError as err: logger.error( "Couldn't delete DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst
-
For API details, see DeleteDBInstance in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBClusterParameterGroups
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_parameter_group(self, parameter_group_name): """ Gets a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to retrieve. :return: The requested parameter group. """ try: response = self.rds_client.describe_db_cluster_parameter_groups( DBClusterParameterGroupName=parameter_group_name ) parameter_group = response["DBClusterParameterGroups"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBParameterGroupNotFound": logger.info("Parameter group %s does not exist.", parameter_group_name) else: logger.error( "Couldn't get parameter group %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return parameter_group
-
For API details, see DescribeDBClusterParameterGroups in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBClusterParameters
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_parameters(self, parameter_group_name, name_prefix="", source=None): """ Gets the parameters that are contained in a DB cluster parameter group. :param parameter_group_name: The name of the parameter group to query. :param name_prefix: When specified, the retrieved list of parameters is filtered to contain only parameters that start with this prefix. :param source: When specified, only parameters from this source are retrieved. For example, a source of 'user' retrieves only parameters that were set by a user. :return: The list of requested parameters. """ try: kwargs = {"DBClusterParameterGroupName": parameter_group_name} if source is not None: kwargs["Source"] = source parameters = [] paginator = self.rds_client.get_paginator("describe_db_cluster_parameters") for page in paginator.paginate(**kwargs): parameters += [ p for p in page["Parameters"] if p["ParameterName"].startswith(name_prefix) ] except ClientError as err: logger.error( "Couldn't get parameters for %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return parameters
-
For API details, see DescribeDBClusterParameters in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBClusterSnapshots
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_cluster_snapshot(self, snapshot_id): """ Gets a DB cluster snapshot. :param snapshot_id: The ID of the snapshot to retrieve. :return: The retrieved snapshot. """ try: response = self.rds_client.describe_db_cluster_snapshots( DBClusterSnapshotIdentifier=snapshot_id ) snapshot = response["DBClusterSnapshots"][0] except ClientError as err: logger.error( "Couldn't get DB cluster snapshot %s. Here's why: %s: %s", snapshot_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return snapshot
-
For API details, see DescribeDBClusterSnapshots in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBClusters
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_db_cluster(self, cluster_name): """ Gets data about an Aurora DB cluster. :param cluster_name: The name of the DB cluster to retrieve. :return: The retrieved DB cluster. """ try: response = self.rds_client.describe_db_clusters( DBClusterIdentifier=cluster_name ) cluster = response["DBClusters"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBClusterNotFoundFault": logger.info("Cluster %s does not exist.", cluster_name) else: logger.error( "Couldn't verify the existence of DB cluster %s. Here's why: %s: %s", cluster_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return cluster
-
For API details, see DescribeDBClusters in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBEngineVersions
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_engine_versions(self, engine, parameter_group_family=None): """ Gets database engine versions that are available for the specified engine and parameter group family. :param engine: The database engine to look up. :param parameter_group_family: When specified, restricts the returned list of engine versions to those that are compatible with this parameter group family. :return: The list of database engine versions. """ try: kwargs = {"Engine": engine} if parameter_group_family is not None: kwargs["DBParameterGroupFamily"] = parameter_group_family response = self.rds_client.describe_db_engine_versions(**kwargs) versions = response["DBEngineVersions"] except ClientError as err: logger.error( "Couldn't get engine versions for %s. Here's why: %s: %s", engine, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return versions
-
For API details, see DescribeDBEngineVersions in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeDBInstances
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_db_instance(self, instance_id): """ Gets data about a DB instance. :param instance_id: The ID of the DB instance to retrieve. :return: The retrieved DB instance. """ try: response = self.rds_client.describe_db_instances( DBInstanceIdentifier=instance_id ) db_inst = response["DBInstances"][0] except ClientError as err: if err.response["Error"]["Code"] == "DBInstanceNotFound": logger.info("Instance %s does not exist.", instance_id) else: logger.error( "Couldn't get DB instance %s. Here's why: %s: %s", instance_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return db_inst
-
For API details, see DescribeDBInstances in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use DescribeOrderableDBInstanceOptions
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def get_orderable_instances(self, db_engine, db_engine_version): """ Gets DB instance options that can be used to create DB instances that are compatible with a set of specifications. :param db_engine: The database engine that must be supported by the DB instance. :param db_engine_version: The engine version that must be supported by the DB instance. :return: The list of DB instance options that can be used to create a compatible DB instance. """ try: inst_opts = [] paginator = self.rds_client.get_paginator( "describe_orderable_db_instance_options" ) for page in paginator.paginate( Engine=db_engine, EngineVersion=db_engine_version ): inst_opts += page["OrderableDBInstanceOptions"] except ClientError as err: logger.error( "Couldn't get orderable DB instances. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return inst_opts
-
For API details, see DescribeOrderableDBInstanceOptions in AWS SDK for Python (Boto3) API Reference.
-
The following code example shows how to use ModifyDBClusterParameterGroup
.
- SDK for Python (Boto3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. class AuroraWrapper: """Encapsulates Aurora DB cluster actions.""" def __init__(self, rds_client): """ :param rds_client: A Boto3 Amazon Relational Database Service (Amazon RDS) client. """ self.rds_client = rds_client @classmethod def from_client(cls): """ Instantiates this class from a Boto3 client. """ rds_client = boto3.client("rds") return cls(rds_client) def update_parameters(self, parameter_group_name, update_parameters): """ Updates parameters in a custom DB cluster parameter group. :param parameter_group_name: The name of the parameter group to update. :param update_parameters: The parameters to update in the group. :return: Data about the modified parameter group. """ try: response = self.rds_client.modify_db_cluster_parameter_group( DBClusterParameterGroupName=parameter_group_name, Parameters=update_parameters, ) except ClientError as err: logger.error( "Couldn't update parameters in %s. Here's why: %s: %s", parameter_group_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response
-
For API details, see ModifyDBClusterParameterGroup in AWS SDK for Python (Boto3) API Reference.
-
Scenarios
The following code example shows how to create a lending library where patrons can borrow and return books by using a REST API backed by an Amazon Aurora database.
- SDK for Python (Boto3)
-
Shows how to use the AWS SDK for Python (Boto3) with the Amazon Relational Database Service (Amazon RDS) API and AWS Chalice to create a REST API backed by an Amazon Aurora database. The web service is fully serverless and represents a simple lending library where patrons can borrow and return books. Learn how to:
Create and manage a serverless Aurora database cluster.
Use AWS Secrets Manager to manage database credentials.
Implement a data storage layer that uses Amazon RDS to move data into and out of the database.
Use AWS Chalice to deploy a serverless REST API to Amazon API Gateway and AWS Lambda.
Use the Requests package to send requests to the web service.
For complete source code and instructions on how to set up and run, see the full example on GitHub
. Services used in this example
API Gateway
Aurora
Lambda
Secrets Manager
The following code example shows how to create a web application that tracks work items in an Amazon Aurora Serverless database and uses Amazon Simple Email Service (Amazon SES) to send reports.
- SDK for Python (Boto3)
-
Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work items in an Amazon Aurora Serverless database and emails reports by using Amazon Simple Email Service (Amazon SES). This example uses the Flask web framework to handle HTTP routing and integrates with a React webpage to present a fully functional web application.
Build a Flask REST service that integrates with AWS services.
Read, write, and update work items that are stored in an Aurora Serverless database.
Create an AWS Secrets Manager secret that contains database credentials and use it to authenticate calls to the database.
Use Amazon SES to send email reports of work items.
For complete source code and instructions on how to set up and run, see the full example on GitHub
. Services used in this example
Aurora
Amazon RDS
Amazon RDS Data Service
Amazon SES