DynamoDB examples using SDK for Python (Boto3) - AWS SDK Code Examples

There are more AWS SDK examples available in the AWS Doc SDK Examples GitHub repo.

DynamoDB examples using SDK for Python (Boto3)

The following code examples show you how to perform actions and implement common scenarios by using the AWS SDK for Python (Boto3) with DynamoDB.

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.

Get started

The following code examples show how to get started using DynamoDB.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

import boto3 # Create a DynamoDB client using the default credentials and region dynamodb = boto3.client("dynamodb") # Initialize a paginator for the list_tables operation paginator = dynamodb.get_paginator("list_tables") # Create a PageIterator from the paginator page_iterator = paginator.paginate(Limit=10) # List the tables in the current AWS account print("Here are the DynamoDB tables in your account:") # Use pagination to list all tables table_names = [] for page in page_iterator: for table_name in page.get("TableNames", []): print(f"- {table_name}") table_names.append(table_name) if not table_names: print("You don't have any DynamoDB tables in your account.") else: print(f"\nFound {len(table_names)} tables.")
  • For API details, see ListTables in AWS SDK for Python (Boto3) API Reference.

Basics

The following code example shows how to:

  • Create a table that can hold movie data.

  • Put, get, and update a single movie in the table.

  • Write movie data to the table from a sample JSON file.

  • Query for movies that were released in a given year.

  • Scan for movies that were released in a range of years.

  • Delete a movie from the table, then delete the table.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create a class that encapsulates a DynamoDB table.

from decimal import Decimal from io import BytesIO import json import logging import os from pprint import pprint import requests from zipfile import ZipFile import boto3 from boto3.dynamodb.conditions import Key from botocore.exceptions import ClientError from question import Question logger = logging.getLogger(__name__) class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def exists(self, table_name): """ Determines whether a table exists. As a side effect, stores the table in a member variable. :param table_name: The name of the table to check. :return: True when the table exists; otherwise, False. """ try: table = self.dyn_resource.Table(table_name) table.load() exists = True except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": exists = False else: logger.error( "Couldn't check for existence of %s. Here's why: %s: %s", table_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: self.table = table return exists def create_table(self, table_name): """ Creates an Amazon DynamoDB table that can be used to store movie data. The table uses the release year of the movie as the partition key and the title as the sort key. :param table_name: The name of the table to create. :return: The newly created table. """ try: self.table = self.dyn_resource.create_table( TableName=table_name, KeySchema=[ {"AttributeName": "year", "KeyType": "HASH"}, # Partition key {"AttributeName": "title", "KeyType": "RANGE"}, # Sort key ], AttributeDefinitions=[ {"AttributeName": "year", "AttributeType": "N"}, {"AttributeName": "title", "AttributeType": "S"}, ], ProvisionedThroughput={ "ReadCapacityUnits": 10, "WriteCapacityUnits": 10, }, ) self.table.wait_until_exists() except ClientError as err: logger.error( "Couldn't create table %s. Here's why: %s: %s", table_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return self.table def list_tables(self): """ Lists the Amazon DynamoDB tables for the current account. :return: The list of tables. """ try: tables = [] for table in self.dyn_resource.tables.all(): print(table.name) tables.append(table) except ClientError as err: logger.error( "Couldn't list tables. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return tables def write_batch(self, movies): """ Fills an Amazon DynamoDB table with the specified data, using the Boto3 Table.batch_writer() function to put the items in the table. Inside the context manager, Table.batch_writer builds a list of requests. On exiting the context manager, Table.batch_writer starts sending batches of write requests to Amazon DynamoDB and automatically handles chunking, buffering, and retrying. :param movies: The data to put in the table. Each item must contain at least the keys required by the schema that was specified when the table was created. """ try: with self.table.batch_writer() as writer: for movie in movies: writer.put_item(Item=movie) except ClientError as err: logger.error( "Couldn't load data into table %s. Here's why: %s: %s", self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise def add_movie(self, title, year, plot, rating): """ Adds a movie to the table. :param title: The title of the movie. :param year: The release year of the movie. :param plot: The plot summary of the movie. :param rating: The quality rating of the movie. """ try: self.table.put_item( Item={ "year": year, "title": title, "info": {"plot": plot, "rating": Decimal(str(rating))}, } ) except ClientError as err: logger.error( "Couldn't add movie %s to table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise def get_movie(self, title, year): """ Gets movie data from the table for a specific movie. :param title: The title of the movie. :param year: The release year of the movie. :return: The data about the requested movie. """ try: response = self.table.get_item(Key={"year": year, "title": title}) except ClientError as err: logger.error( "Couldn't get movie %s from table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Item"] def update_movie(self, title, year, rating, plot): """ Updates rating and plot data for a movie in the table. :param title: The title of the movie to update. :param year: The release year of the movie to update. :param rating: The updated rating to the give the movie. :param plot: The updated plot summary to give the movie. :return: The fields that were updated, with their new values. """ try: response = self.table.update_item( Key={"year": year, "title": title}, UpdateExpression="set info.rating=:r, info.plot=:p", ExpressionAttributeValues={":r": Decimal(str(rating)), ":p": plot}, ReturnValues="UPDATED_NEW", ) except ClientError as err: logger.error( "Couldn't update movie %s in table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Attributes"] def query_movies(self, year): """ Queries for movies that were released in the specified year. :param year: The year to query. :return: The list of movies that were released in the specified year. """ try: response = self.table.query(KeyConditionExpression=Key("year").eq(year)) except ClientError as err: logger.error( "Couldn't query for movies released in %s. Here's why: %s: %s", year, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Items"] def scan_movies(self, year_range): """ Scans for movies that were released in a range of years. Uses a projection expression to return a subset of data for each movie. :param year_range: The range of years to retrieve. :return: The list of movies released in the specified years. """ movies = [] scan_kwargs = { "FilterExpression": Key("year").between( year_range["first"], year_range["second"] ), "ProjectionExpression": "#yr, title, info.rating", "ExpressionAttributeNames": {"#yr": "year"}, } try: done = False start_key = None while not done: if start_key: scan_kwargs["ExclusiveStartKey"] = start_key response = self.table.scan(**scan_kwargs) movies.extend(response.get("Items", [])) start_key = response.get("LastEvaluatedKey", None) done = start_key is None except ClientError as err: logger.error( "Couldn't scan for movies. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise return movies def delete_movie(self, title, year): """ Deletes a movie from the table. :param title: The title of the movie to delete. :param year: The release year of the movie to delete. """ try: self.table.delete_item(Key={"year": year, "title": title}) except ClientError as err: logger.error( "Couldn't delete movie %s. Here's why: %s: %s", title, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise def delete_table(self): """ Deletes the table. """ try: self.table.delete() self.table = None except ClientError as err: logger.error( "Couldn't delete table. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

Create a helper function to download and extract the sample JSON file.

def get_sample_movie_data(movie_file_name): """ Gets sample movie data, either from a local file or by first downloading it from the Amazon DynamoDB developer guide. :param movie_file_name: The local file name where the movie data is stored in JSON format. :return: The movie data as a dict. """ if not os.path.isfile(movie_file_name): print(f"Downloading {movie_file_name}...") movie_content = requests.get( "https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/moviedata.zip" ) movie_zip = ZipFile(BytesIO(movie_content.content)) movie_zip.extractall() try: with open(movie_file_name) as movie_file: movie_data = json.load(movie_file, parse_float=Decimal) except FileNotFoundError: print( f"File {movie_file_name} not found. You must first download the file to " "run this demo. See the README for instructions." ) raise else: # The sample file lists over 4000 movies, return only the first 250. return movie_data[:250]

Run an interactive scenario to create the table and perform actions on it.

def run_scenario(table_name, movie_file_name, dyn_resource): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") print("-" * 88) print("Welcome to the Amazon DynamoDB getting started demo.") print("-" * 88) movies = Movies(dyn_resource) movies_exists = movies.exists(table_name) if not movies_exists: print(f"\nCreating table {table_name}...") movies.create_table(table_name) print(f"\nCreated table {movies.table.name}.") my_movie = Question.ask_questions( [ Question( "title", "Enter the title of a movie you want to add to the table: " ), Question("year", "What year was it released? ", Question.is_int), Question( "rating", "On a scale of 1 - 10, how do you rate it? ", Question.is_float, Question.in_range(1, 10), ), Question("plot", "Summarize the plot for me: "), ] ) movies.add_movie(**my_movie) print(f"\nAdded '{my_movie['title']}' to '{movies.table.name}'.") print("-" * 88) movie_update = Question.ask_questions( [ Question( "rating", f"\nLet's update your movie.\nYou rated it {my_movie['rating']}, what new " f"rating would you give it? ", Question.is_float, Question.in_range(1, 10), ), Question( "plot", f"You summarized the plot as '{my_movie['plot']}'.\nWhat would you say now? ", ), ] ) my_movie.update(movie_update) updated = movies.update_movie(**my_movie) print(f"\nUpdated '{my_movie['title']}' with new attributes:") pprint(updated) print("-" * 88) if not movies_exists: movie_data = get_sample_movie_data(movie_file_name) print(f"\nReading data from '{movie_file_name}' into your table.") movies.write_batch(movie_data) print(f"\nWrote {len(movie_data)} movies into {movies.table.name}.") print("-" * 88) title = "The Lord of the Rings: The Fellowship of the Ring" if Question.ask_question( f"Let's move on...do you want to get info about '{title}'? (y/n) ", Question.is_yesno, ): movie = movies.get_movie(title, 2001) print("\nHere's what I found:") pprint(movie) print("-" * 88) ask_for_year = True while ask_for_year: release_year = Question.ask_question( f"\nLet's get a list of movies released in a given year. Enter a year between " f"1972 and 2018: ", Question.is_int, Question.in_range(1972, 2018), ) releases = movies.query_movies(release_year) if releases: print(f"There were {len(releases)} movies released in {release_year}:") for release in releases: print(f"\t{release['title']}") ask_for_year = False else: print(f"I don't know about any movies released in {release_year}!") ask_for_year = Question.ask_question( "Try another year? (y/n) ", Question.is_yesno ) print("-" * 88) years = Question.ask_questions( [ Question( "first", f"\nNow let's scan for movies released in a range of years. Enter a year: ", Question.is_int, Question.in_range(1972, 2018), ), Question( "second", "Now enter another year: ", Question.is_int, Question.in_range(1972, 2018), ), ] ) releases = movies.scan_movies(years) if releases: count = Question.ask_question( f"\nFound {len(releases)} movies. How many do you want to see? ", Question.is_int, Question.in_range(1, len(releases)), ) print(f"\nHere are your {count} movies:\n") pprint(releases[:count]) else: print( f"I don't know about any movies released between {years['first']} " f"and {years['second']}." ) print("-" * 88) if Question.ask_question( f"\nLet's remove your movie from the table. Do you want to remove " f"'{my_movie['title']}'? (y/n)", Question.is_yesno, ): movies.delete_movie(my_movie["title"], my_movie["year"]) print(f"\nRemoved '{my_movie['title']}' from the table.") print("-" * 88) if Question.ask_question(f"\nDelete the table? (y/n) ", Question.is_yesno): movies.delete_table() print(f"Deleted {table_name}.") else: print( "Don't forget to delete the table when you're done or you might incur " "charges on your account." ) print("\nThanks for watching!") print("-" * 88) if __name__ == "__main__": try: run_scenario( "doc-example-table-movies", "moviedata.json", boto3.resource("dynamodb") ) except Exception as e: print(f"Something went wrong with the demo! Here's what: {e}")

This scenario uses the following helper class to ask questions at a command prompt.

class Question: """ A helper class to ask questions at a command prompt and validate and convert the answers. """ def __init__(self, key, question, *validators): """ :param key: The key that is used for storing the answer in a dict, when multiple questions are asked in a set. :param question: The question to ask. :param validators: The answer is passed through the list of validators until one fails or they all pass. Validators may also convert the answer to another form, such as from a str to an int. """ self.key = key self.question = question self.validators = Question.non_empty, *validators @staticmethod def ask_questions(questions): """ Asks a set of questions and stores the answers in a dict. :param questions: The list of questions to ask. :return: A dict of answers. """ answers = {} for question in questions: answers[question.key] = Question.ask_question( question.question, *question.validators ) return answers @staticmethod def ask_question(question, *validators): """ Asks a single question and validates it against a list of validators. When an answer fails validation, the complaint is printed and the question is asked again. :param question: The question to ask. :param validators: The list of validators that the answer must pass. :return: The answer, converted to its final form by the validators. """ answer = None while answer is None: answer = input(question) for validator in validators: answer, complaint = validator(answer) if answer is None: print(complaint) break return answer @staticmethod def non_empty(answer): """ Validates that the answer is not empty. :return: The non-empty answer, or None. """ return answer if answer != "" else None, "I need an answer. Please?" @staticmethod def is_yesno(answer): """ Validates a yes/no answer. :return: True when the answer is 'y'; otherwise, False. """ return answer.lower() == "y", "" @staticmethod def is_int(answer): """ Validates that the answer can be converted to an int. :return: The int answer; otherwise, None. """ try: int_answer = int(answer) except ValueError: int_answer = None return int_answer, f"{answer} must be a valid integer." @staticmethod def is_letter(answer): """ Validates that the answer is a letter. :return The letter answer, converted to uppercase; otherwise, None. """ return ( answer.upper() if answer.isalpha() else None, f"{answer} must be a single letter.", ) @staticmethod def is_float(answer): """ Validate that the answer can be converted to a float. :return The float answer; otherwise, None. """ try: float_answer = float(answer) except ValueError: float_answer = None return float_answer, f"{answer} must be a valid float." @staticmethod def in_range(lower, upper): """ Validate that the answer is within a range. The answer must be of a type that can be compared to the lower and upper bounds. :return: The answer, if it is within the range; otherwise, None. """ def _validate(answer): return ( answer if lower <= answer <= upper else None, f"{answer} must be between {lower} and {upper}.", ) return _validate

Actions

The following code example shows how to use BatchExecuteStatement.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class PartiQLBatchWrapper: """ Encapsulates a DynamoDB resource to run PartiQL statements. """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource def run_partiql(self, statements, param_list): """ Runs a PartiQL statement. A Boto3 resource is used even though `execute_statement` is called on the underlying `client` object because the resource transforms input and output from plain old Python objects (POPOs) to the DynamoDB format. If you create the client directly, you must do these transforms yourself. :param statements: The batch of PartiQL statements. :param param_list: The batch of PartiQL parameters that are associated with each statement. This list must be in the same order as the statements. :return: The responses returned from running the statements, if any. """ try: output = self.dyn_resource.meta.client.batch_execute_statement( Statements=[ {"Statement": statement, "Parameters": params} for statement, params in zip(statements, param_list) ] ) except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": logger.error( "Couldn't execute batch of PartiQL statements because the table " "does not exist." ) else: logger.error( "Couldn't execute batch of PartiQL statements. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return output

The following code example shows how to use BatchGetItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

import decimal import json import logging import os import pprint import time import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) dynamodb = boto3.resource("dynamodb") MAX_GET_SIZE = 100 # Amazon DynamoDB rejects a get batch larger than 100 items. def do_batch_get(batch_keys): """ Gets a batch of items from Amazon DynamoDB. Batches can contain keys from more than one table. When Amazon DynamoDB cannot process all items in a batch, a set of unprocessed keys is returned. This function uses an exponential backoff algorithm to retry getting the unprocessed keys until all are retrieved or the specified number of tries is reached. :param batch_keys: The set of keys to retrieve. A batch can contain at most 100 keys. Otherwise, Amazon DynamoDB returns an error. :return: The dictionary of retrieved items grouped under their respective table names. """ tries = 0 max_tries = 5 sleepy_time = 1 # Start with 1 second of sleep, then exponentially increase. retrieved = {key: [] for key in batch_keys} while tries < max_tries: response = dynamodb.batch_get_item(RequestItems=batch_keys) # Collect any retrieved items and retry unprocessed keys. for key in response.get("Responses", []): retrieved[key] += response["Responses"][key] unprocessed = response["UnprocessedKeys"] if len(unprocessed) > 0: batch_keys = unprocessed unprocessed_count = sum( [len(batch_key["Keys"]) for batch_key in batch_keys.values()] ) logger.info( "%s unprocessed keys returned. Sleep, then retry.", unprocessed_count ) tries += 1 if tries < max_tries: logger.info("Sleeping for %s seconds.", sleepy_time) time.sleep(sleepy_time) sleepy_time = min(sleepy_time * 2, 32) else: break return retrieved
  • For API details, see BatchGetItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use BatchWriteItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def write_batch(self, movies): """ Fills an Amazon DynamoDB table with the specified data, using the Boto3 Table.batch_writer() function to put the items in the table. Inside the context manager, Table.batch_writer builds a list of requests. On exiting the context manager, Table.batch_writer starts sending batches of write requests to Amazon DynamoDB and automatically handles chunking, buffering, and retrying. :param movies: The data to put in the table. Each item must contain at least the keys required by the schema that was specified when the table was created. """ try: with self.table.batch_writer() as writer: for movie in movies: writer.put_item(Item=movie) except ClientError as err: logger.error( "Couldn't load data into table %s. Here's why: %s: %s", self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise
  • For API details, see BatchWriteItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use CreateTable.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create a table for storing movie data.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def create_table(self, table_name): """ Creates an Amazon DynamoDB table that can be used to store movie data. The table uses the release year of the movie as the partition key and the title as the sort key. :param table_name: The name of the table to create. :return: The newly created table. """ try: self.table = self.dyn_resource.create_table( TableName=table_name, KeySchema=[ {"AttributeName": "year", "KeyType": "HASH"}, # Partition key {"AttributeName": "title", "KeyType": "RANGE"}, # Sort key ], AttributeDefinitions=[ {"AttributeName": "year", "AttributeType": "N"}, {"AttributeName": "title", "AttributeType": "S"}, ], ProvisionedThroughput={ "ReadCapacityUnits": 10, "WriteCapacityUnits": 10, }, ) self.table.wait_until_exists() except ClientError as err: logger.error( "Couldn't create table %s. Here's why: %s: %s", table_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return self.table
  • For API details, see CreateTable in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use DeleteItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def delete_movie(self, title, year): """ Deletes a movie from the table. :param title: The title of the movie to delete. :param year: The release year of the movie to delete. """ try: self.table.delete_item(Key={"year": year, "title": title}) except ClientError as err: logger.error( "Couldn't delete movie %s. Here's why: %s: %s", title, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

You can specify a condition so that an item is deleted only when it meets certain criteria.

class UpdateQueryWrapper: def __init__(self, table): self.table = table def delete_underrated_movie(self, title, year, rating): """ Deletes a movie only if it is rated below a specified value. By using a condition expression in a delete operation, you can specify that an item is deleted only when it meets certain criteria. :param title: The title of the movie to delete. :param year: The release year of the movie to delete. :param rating: The rating threshold to check before deleting the movie. """ try: self.table.delete_item( Key={"year": year, "title": title}, ConditionExpression="info.rating <= :val", ExpressionAttributeValues={":val": Decimal(str(rating))}, ) except ClientError as err: if err.response["Error"]["Code"] == "ConditionalCheckFailedException": logger.warning( "Didn't delete %s because its rating is greater than %s.", title, rating, ) else: logger.error( "Couldn't delete movie %s. Here's why: %s: %s", title, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise
  • For API details, see DeleteItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use DeleteTable.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def delete_table(self): """ Deletes the table. """ try: self.table.delete() self.table = None except ClientError as err: logger.error( "Couldn't delete table. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise
  • For API details, see DeleteTable in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use DescribeTable.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def exists(self, table_name): """ Determines whether a table exists. As a side effect, stores the table in a member variable. :param table_name: The name of the table to check. :return: True when the table exists; otherwise, False. """ try: table = self.dyn_resource.Table(table_name) table.load() exists = True except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": exists = False else: logger.error( "Couldn't check for existence of %s. Here's why: %s: %s", table_name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: self.table = table return exists
  • For API details, see DescribeTable in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use DescribeTimeToLive.

SDK for Python (Boto3)
import boto3 def describe_ttl(table_name, region): """ Describes TTL on an existing table, as well as a region. :param table_name: String representing the name of the table :param region: AWS Region of the table - example `us-east-1` :return: Time to live description. """ try: dynamodb = boto3.resource('dynamodb', region_name=region) ttl_description = dynamodb.describe_time_to_live(TableName=table_name) print( f"TimeToLive for table {table_name} is status {ttl_description['TimeToLiveDescription']['TimeToLiveStatus']}") return ttl_description except Exception as e: print(f"Error describing table: {e}") raise # Enter your own table name and AWS region describe_ttl('your-table-name', 'us-east-1')

The following code example shows how to use ExecuteStatement.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class PartiQLWrapper: """ Encapsulates a DynamoDB resource to run PartiQL statements. """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource def run_partiql(self, statement, params): """ Runs a PartiQL statement. A Boto3 resource is used even though `execute_statement` is called on the underlying `client` object because the resource transforms input and output from plain old Python objects (POPOs) to the DynamoDB format. If you create the client directly, you must do these transforms yourself. :param statement: The PartiQL statement. :param params: The list of PartiQL parameters. These are applied to the statement in the order they are listed. :return: The items returned from the statement, if any. """ try: output = self.dyn_resource.meta.client.execute_statement( Statement=statement, Parameters=params ) except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": logger.error( "Couldn't execute PartiQL '%s' because the table does not exist.", statement, ) else: logger.error( "Couldn't execute PartiQL '%s'. Here's why: %s: %s", statement, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return output
  • For API details, see ExecuteStatement in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use GetItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def get_movie(self, title, year): """ Gets movie data from the table for a specific movie. :param title: The title of the movie. :param year: The release year of the movie. :return: The data about the requested movie. """ try: response = self.table.get_item(Key={"year": year, "title": title}) except ClientError as err: logger.error( "Couldn't get movie %s from table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Item"]
  • For API details, see GetItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use ListTables.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def list_tables(self): """ Lists the Amazon DynamoDB tables for the current account. :return: The list of tables. """ try: tables = [] for table in self.dyn_resource.tables.all(): print(table.name) tables.append(table) except ClientError as err: logger.error( "Couldn't list tables. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return tables
  • For API details, see ListTables in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use PutItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def add_movie(self, title, year, plot, rating): """ Adds a movie to the table. :param title: The title of the movie. :param year: The release year of the movie. :param plot: The plot summary of the movie. :param rating: The quality rating of the movie. """ try: self.table.put_item( Item={ "year": year, "title": title, "info": {"plot": plot, "rating": Decimal(str(rating))}, } ) except ClientError as err: logger.error( "Couldn't add movie %s to table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise
  • For API details, see PutItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use Query.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Query items by using a key condition expression.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def query_movies(self, year): """ Queries for movies that were released in the specified year. :param year: The year to query. :return: The list of movies that were released in the specified year. """ try: response = self.table.query(KeyConditionExpression=Key("year").eq(year)) except ClientError as err: logger.error( "Couldn't query for movies released in %s. Here's why: %s: %s", year, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Items"]

Query items and project them to return a subset of data.

class UpdateQueryWrapper: def __init__(self, table): self.table = table def query_and_project_movies(self, year, title_bounds): """ Query for movies that were released in a specified year and that have titles that start within a range of letters. A projection expression is used to return a subset of data for each movie. :param year: The release year to query. :param title_bounds: The range of starting letters to query. :return: The list of movies. """ try: response = self.table.query( ProjectionExpression="#yr, title, info.genres, info.actors[0]", ExpressionAttributeNames={"#yr": "year"}, KeyConditionExpression=( Key("year").eq(year) & Key("title").between( title_bounds["first"], title_bounds["second"] ) ), ) except ClientError as err: if err.response["Error"]["Code"] == "ValidationException": logger.warning( "There's a validation error. Here's the message: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) else: logger.error( "Couldn't query for movies. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Items"]
  • For API details, see Query in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use Scan.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def scan_movies(self, year_range): """ Scans for movies that were released in a range of years. Uses a projection expression to return a subset of data for each movie. :param year_range: The range of years to retrieve. :return: The list of movies released in the specified years. """ movies = [] scan_kwargs = { "FilterExpression": Key("year").between( year_range["first"], year_range["second"] ), "ProjectionExpression": "#yr, title, info.rating", "ExpressionAttributeNames": {"#yr": "year"}, } try: done = False start_key = None while not done: if start_key: scan_kwargs["ExclusiveStartKey"] = start_key response = self.table.scan(**scan_kwargs) movies.extend(response.get("Items", [])) start_key = response.get("LastEvaluatedKey", None) done = start_key is None except ClientError as err: logger.error( "Couldn't scan for movies. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise return movies
  • For API details, see Scan in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use UpdateItem.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Update an item by using an update expression.

class Movies: """Encapsulates an Amazon DynamoDB table of movie data. Example data structure for a movie record in this table: { "year": 1999, "title": "For Love of the Game", "info": { "directors": ["Sam Raimi"], "release_date": "1999-09-15T00:00:00Z", "rating": 6.3, "plot": "A washed up pitcher flashes through his career.", "rank": 4987, "running_time_secs": 8220, "actors": [ "Kevin Costner", "Kelly Preston", "John C. Reilly" ] } } """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource # The table variable is set during the scenario in the call to # 'exists' if the table exists. Otherwise, it is set by 'create_table'. self.table = None def update_movie(self, title, year, rating, plot): """ Updates rating and plot data for a movie in the table. :param title: The title of the movie to update. :param year: The release year of the movie to update. :param rating: The updated rating to the give the movie. :param plot: The updated plot summary to give the movie. :return: The fields that were updated, with their new values. """ try: response = self.table.update_item( Key={"year": year, "title": title}, UpdateExpression="set info.rating=:r, info.plot=:p", ExpressionAttributeValues={":r": Decimal(str(rating)), ":p": plot}, ReturnValues="UPDATED_NEW", ) except ClientError as err: logger.error( "Couldn't update movie %s in table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Attributes"]

Update an item by using an update expression that includes an arithmetic operation.

class UpdateQueryWrapper: def __init__(self, table): self.table = table def update_rating(self, title, year, rating_change): """ Updates the quality rating of a movie in the table by using an arithmetic operation in the update expression. By specifying an arithmetic operation, you can adjust a value in a single request, rather than first getting its value and then setting its new value. :param title: The title of the movie to update. :param year: The release year of the movie to update. :param rating_change: The amount to add to the current rating for the movie. :return: The updated rating. """ try: response = self.table.update_item( Key={"year": year, "title": title}, UpdateExpression="set info.rating = info.rating + :val", ExpressionAttributeValues={":val": Decimal(str(rating_change))}, ReturnValues="UPDATED_NEW", ) except ClientError as err: logger.error( "Couldn't update movie %s in table %s. Here's why: %s: %s", title, self.table.name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Attributes"]

Update an item only when it meets certain conditions.

class UpdateQueryWrapper: def __init__(self, table): self.table = table def remove_actors(self, title, year, actor_threshold): """ Removes an actor from a movie, but only when the number of actors is greater than a specified threshold. If the movie does not list more than the threshold, no actors are removed. :param title: The title of the movie to update. :param year: The release year of the movie to update. :param actor_threshold: The threshold of actors to check. :return: The movie data after the update. """ try: response = self.table.update_item( Key={"year": year, "title": title}, UpdateExpression="remove info.actors[0]", ConditionExpression="size(info.actors) > :num", ExpressionAttributeValues={":num": actor_threshold}, ReturnValues="ALL_NEW", ) except ClientError as err: if err.response["Error"]["Code"] == "ConditionalCheckFailedException": logger.warning( "Didn't update %s because it has fewer than %s actors.", title, actor_threshold + 1, ) else: logger.error( "Couldn't update movie %s. Here's why: %s: %s", title, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return response["Attributes"]
  • For API details, see UpdateItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to use UpdateTimeToLive.

SDK for Python (Boto3)

Enable TTL on an existing DynamoDB table.

import boto3 def enable_ttl(table_name, ttl_attribute_name): """ Enables TTL on DynamoDB table for a given attribute name on success, returns a status code of 200 on error, throws an exception :param table_name: Name of the DynamoDB table :param ttl_attribute_name: The name of the TTL attribute being provided to the table. """ try: dynamodb = boto3.client('dynamodb') # Enable TTL on an existing DynamoDB table response = dynamodb.update_time_to_live( TableName=table_name, TimeToLiveSpecification={ 'Enabled': True, 'AttributeName': ttl_attribute_name } ) # In the returned response, check for a successful status code. if response['ResponseMetadata']['HTTPStatusCode'] == 200: print("TTL has been enabled successfully.") else: print(f"Failed to enable TTL, status code {response['ResponseMetadata']['HTTPStatusCode']}") return response except Exception as ex: print("Couldn't enable TTL in table %s. Here's why: %s" % (table_name, ex)) raise # your values enable_ttl('your-table-name', 'expireAt')

Disable TTL on an existing DynamoDB table.

import boto3 def disable_ttl(table_name, ttl_attribute_name): """ Disables TTL on DynamoDB table for a given attribute name on success, returns a status code of 200 on error, throws an exception :param table_name: Name of the DynamoDB table being modified :param ttl_attribute_name: The name of the TTL attribute being provided to the table. """ try: dynamodb = boto3.client('dynamodb') # Enable TTL on an existing DynamoDB table response = dynamodb.update_time_to_live( TableName=table_name, TimeToLiveSpecification={ 'Enabled': False, 'AttributeName': ttl_attribute_name } ) # In the returned response, check for a successful status code. if response['ResponseMetadata']['HTTPStatusCode'] == 200: print("TTL has been disabled successfully.") else: print(f"Failed to disable TTL, status code {response['ResponseMetadata']['HTTPStatusCode']}") except Exception as ex: print("Couldn't disable TTL in table %s. Here's why: %s" % (table_name, ex)) raise # your values disable_ttl('your-table-name', 'expireAt')
  • For API details, see UpdateTimeToLive in AWS SDK for Python (Boto3) API Reference.

Scenarios

The following code example shows how to:

  • Create and write data to a table with both the DAX and SDK clients.

  • Get, query, and scan the table with both clients and compare their performance.

For more information, see Developing with the DynamoDB Accelerator Client.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create a table with either the DAX or Boto3 client.

import boto3 def create_dax_table(dyn_resource=None): """ Creates a DynamoDB table. :param dyn_resource: Either a Boto3 or DAX resource. :return: The newly created table. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table_name = "TryDaxTable" params = { "TableName": table_name, "KeySchema": [ {"AttributeName": "partition_key", "KeyType": "HASH"}, {"AttributeName": "sort_key", "KeyType": "RANGE"}, ], "AttributeDefinitions": [ {"AttributeName": "partition_key", "AttributeType": "N"}, {"AttributeName": "sort_key", "AttributeType": "N"}, ], "ProvisionedThroughput": {"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}, } table = dyn_resource.create_table(**params) print(f"Creating {table_name}...") table.wait_until_exists() return table if __name__ == "__main__": dax_table = create_dax_table() print(f"Created table.")

Write test data to the table.

import boto3 def write_data_to_dax_table(key_count, item_size, dyn_resource=None): """ Writes test data to the demonstration table. :param key_count: The number of partition and sort keys to use to populate the table. The total number of items is key_count * key_count. :param item_size: The size of non-key data for each test item. :param dyn_resource: Either a Boto3 or DAX resource. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table = dyn_resource.Table("TryDaxTable") some_data = "X" * item_size for partition_key in range(1, key_count + 1): for sort_key in range(1, key_count + 1): table.put_item( Item={ "partition_key": partition_key, "sort_key": sort_key, "some_data": some_data, } ) print(f"Put item ({partition_key}, {sort_key}) succeeded.") if __name__ == "__main__": write_key_count = 10 write_item_size = 1000 print( f"Writing {write_key_count*write_key_count} items to the table. " f"Each item is {write_item_size} characters." ) write_data_to_dax_table(write_key_count, write_item_size)

Get items for a number of iterations for both the DAX client and the Boto3 client and report the time spent for each.

import argparse import sys import time import amazondax import boto3 def get_item_test(key_count, iterations, dyn_resource=None): """ Gets items from the table a specified number of times. The time before the first iteration and the time after the last iteration are both captured and reported. :param key_count: The number of items to get from the table in each iteration. :param iterations: The number of iterations to run. :param dyn_resource: Either a Boto3 or DAX resource. :return: The start and end times of the test. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table = dyn_resource.Table("TryDaxTable") start = time.perf_counter() for _ in range(iterations): for partition_key in range(1, key_count + 1): for sort_key in range(1, key_count + 1): table.get_item( Key={"partition_key": partition_key, "sort_key": sort_key} ) print(".", end="") sys.stdout.flush() print() end = time.perf_counter() return start, end if __name__ == "__main__": # pylint: disable=not-context-manager parser = argparse.ArgumentParser() parser.add_argument( "endpoint_url", nargs="?", help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.", ) args = parser.parse_args() test_key_count = 10 test_iterations = 50 if args.endpoint_url: print( f"Getting each item from the table {test_iterations} times, " f"using the DAX client." ) # Use a with statement so the DAX client closes the cluster after completion. with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url) as dax: test_start, test_end = get_item_test( test_key_count, test_iterations, dyn_resource=dax ) else: print( f"Getting each item from the table {test_iterations} times, " f"using the Boto3 client." ) test_start, test_end = get_item_test(test_key_count, test_iterations) print( f"Total time: {test_end - test_start:.4f} sec. Average time: " f"{(test_end - test_start)/ test_iterations}." )

Query the table for a number of iterations for both the DAX client and the Boto3 client and report the time spent for each.

import argparse import time import sys import amazondax import boto3 from boto3.dynamodb.conditions import Key def query_test(partition_key, sort_keys, iterations, dyn_resource=None): """ Queries the table a specified number of times. The time before the first iteration and the time after the last iteration are both captured and reported. :param partition_key: The partition key value to use in the query. The query returns items that have partition keys equal to this value. :param sort_keys: The range of sort key values for the query. The query returns items that have sort key values between these two values. :param iterations: The number of iterations to run. :param dyn_resource: Either a Boto3 or DAX resource. :return: The start and end times of the test. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table = dyn_resource.Table("TryDaxTable") key_condition_expression = Key("partition_key").eq(partition_key) & Key( "sort_key" ).between(*sort_keys) start = time.perf_counter() for _ in range(iterations): table.query(KeyConditionExpression=key_condition_expression) print(".", end="") sys.stdout.flush() print() end = time.perf_counter() return start, end if __name__ == "__main__": # pylint: disable=not-context-manager parser = argparse.ArgumentParser() parser.add_argument( "endpoint_url", nargs="?", help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.", ) args = parser.parse_args() test_partition_key = 5 test_sort_keys = (2, 9) test_iterations = 100 if args.endpoint_url: print(f"Querying the table {test_iterations} times, using the DAX client.") # Use a with statement so the DAX client closes the cluster after completion. with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url) as dax: test_start, test_end = query_test( test_partition_key, test_sort_keys, test_iterations, dyn_resource=dax ) else: print(f"Querying the table {test_iterations} times, using the Boto3 client.") test_start, test_end = query_test( test_partition_key, test_sort_keys, test_iterations ) print( f"Total time: {test_end - test_start:.4f} sec. Average time: " f"{(test_end - test_start)/test_iterations}." )

Scan the table for a number of iterations for both the DAX client and the Boto3 client and report the time spent for each.

import argparse import time import sys import amazondax import boto3 def scan_test(iterations, dyn_resource=None): """ Scans the table a specified number of times. The time before the first iteration and the time after the last iteration are both captured and reported. :param iterations: The number of iterations to run. :param dyn_resource: Either a Boto3 or DAX resource. :return: The start and end times of the test. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table = dyn_resource.Table("TryDaxTable") start = time.perf_counter() for _ in range(iterations): table.scan() print(".", end="") sys.stdout.flush() print() end = time.perf_counter() return start, end if __name__ == "__main__": # pylint: disable=not-context-manager parser = argparse.ArgumentParser() parser.add_argument( "endpoint_url", nargs="?", help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.", ) args = parser.parse_args() test_iterations = 100 if args.endpoint_url: print(f"Scanning the table {test_iterations} times, using the DAX client.") # Use a with statement so the DAX client closes the cluster after completion. with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url) as dax: test_start, test_end = scan_test(test_iterations, dyn_resource=dax) else: print(f"Scanning the table {test_iterations} times, using the Boto3 client.") test_start, test_end = scan_test(test_iterations) print( f"Total time: {test_end - test_start:.4f} sec. Average time: " f"{(test_end - test_start)/test_iterations}." )

Delete the table.

import boto3 def delete_dax_table(dyn_resource=None): """ Deletes the demonstration table. :param dyn_resource: Either a Boto3 or DAX resource. """ if dyn_resource is None: dyn_resource = boto3.resource("dynamodb") table = dyn_resource.Table("TryDaxTable") table.delete() print(f"Deleting {table.name}...") table.wait_until_not_exists() if __name__ == "__main__": delete_dax_table() print("Table deleted!")

The following code example shows how to conditionally update an item's TTL.

SDK for Python (Boto3)
import boto3 from datetime import datetime, timedelta from botocore.exceptions import ClientError def update_dynamodb_item(table_name, region, primary_key, sort_key, ttl_attribute): """ Updates an existing record in a DynamoDB table with a new or updated TTL attribute. :param table_name: Name of the DynamoDB table :param region: AWS Region of the table - example `us-east-1` :param primary_key: one attribute known as the partition key. :param sort_key: Also known as a range attribute. :param ttl_attribute: name of the TTL attribute in the target DynamoDB table :return: """ try: dynamodb = boto3.resource('dynamodb', region_name=region) table = dynamodb.Table(table_name) # Generate updated TTL in epoch second format updated_expiration_time = int((datetime.now() + timedelta(days=90)).timestamp()) # Define the update expression for adding/updating a new attribute update_expression = "SET newAttribute = :val1" # Define the condition expression for checking if 'expireAt' is not expired condition_expression = "expireAt > :val2" # Define the expression attribute values expression_attribute_values = { ':val1': ttl_attribute, ':val2': updated_expiration_time } response = table.update_item( Key={ 'primaryKey': primary_key, 'sortKey': sort_key }, UpdateExpression=update_expression, ConditionExpression=condition_expression, ExpressionAttributeValues=expression_attribute_values ) print("Item updated successfully.") return response['ResponseMetadata']['HTTPStatusCode'] # Ideally a 200 OK except ClientError as e: if e.response['Error']['Code'] == "ConditionalCheckFailedException": print("Condition check failed: Item's 'expireAt' is expired.") else: print(f"Error updating item: {e}") except Exception as e: print(f"Error updating item: {e}") # replace with your values update_dynamodb_item('your-table-name', 'us-east-1', 'your-partition-key-value', 'your-sort-key-value', 'your-ttl-attribute-value')
  • For API details, see UpdateItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to create a REST API that simulates a system to track daily cases of COVID-19 in the United States, using fictional data.

SDK for Python (Boto3)

Shows how to use AWS Chalice with the AWS SDK for Python (Boto3) to create a serverless REST API that uses Amazon API Gateway, AWS Lambda, and Amazon DynamoDB. The REST API simulates a system that tracks daily cases of COVID-19 in the United States, using fictional data. Learn how to:

  • Use AWS Chalice to define routes in Lambda functions that are called to handle REST requests that come through API Gateway.

  • Use Lambda functions to retrieve and store data in a DynamoDB table to serve REST requests.

  • Define table structure and security role resources in an AWS CloudFormation template.

  • Use AWS Chalice and CloudFormation to package and deploy all necessary resources.

  • Use CloudFormation to clean up all created resources.

For complete source code and instructions on how to set up and run, see the full example on GitHub.

Services used in this example
  • API Gateway

  • AWS CloudFormation

  • DynamoDB

  • Lambda

The following code example shows how to create an AWS Step Functions messenger application that retrieves message records from a database table.

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with AWS Step Functions to create a messenger application that retrieves message records from an Amazon DynamoDB table and sends them with Amazon Simple Queue Service (Amazon SQS). The state machine integrates with an AWS Lambda function to scan the database for unsent messages.

  • Create a state machine that retrieves and updates message records from an Amazon DynamoDB table.

  • Update the state machine definition to also send messages to Amazon Simple Queue Service (Amazon SQS).

  • Start and stop state machine runs.

  • Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service integrations.

For complete source code and instructions on how to set up and run, see the full example on GitHub.

Services used in this example
  • DynamoDB

  • Lambda

  • Amazon SQS

  • Step Functions

The following code example shows how to create a table with warm throughput enabled.

SDK for Python (Boto3)
from boto3 import resource from botocore.exceptions import ClientError def create_dynamodb_table_warm_throughput(table_name, partition_key, sort_key, misc_key_attr, non_key_attr, table_provisioned_read_units, table_provisioned_write_units, table_warm_reads, table_warm_writes, gsi_name, gsi_provisioned_read_units, gsi_provisioned_write_units, gsi_warm_reads, gsi_warm_writes, region_name="us-east-1"): """ Creates a DynamoDB table with a warm throughput setting configured. :param table_name: The name of the table to be created. :param partition_key: The partition key for the table being created. :param sort_key: The sort key for the table being created. :param misc_key_attr: A miscellaneous key attribute for the table being created. :param non_key_attr: A non-key attribute for the table being created. :param table_provisioned_read_units: The newly created table's provisioned read capacity units. :param table_provisioned_write_units: The newly created table's provisioned write capacity units. :param table_warm_reads: The read units per second setting for the table's warm throughput. :param table_warm_writes: The write units per second setting for the table's warm throughput. :param gsi_name: The name of the Global Secondary Index (GSI) to be created on the table. :param gsi_provisioned_read_units: The configured Global Secondary Index (GSI) provisioned read capacity units. :param gsi_provisioned_write_units: The configured Global Secondary Index (GSI) provisioned write capacity units. :param gsi_warm_reads: The read units per second setting for the Global Secondary Index (GSI)'s warm throughput. :param gsi_warm_writes: The write units per second setting for the Global Secondary Index (GSI)'s warm throughput. :param region_name: The AWS Region name to target. defaults to us-east-1 """ try: ddb = resource('dynamodb', region_name) # Define the table attributes attribute_definitions = [ { "AttributeName": partition_key, "AttributeType": "S" }, { "AttributeName": sort_key, "AttributeType": "S" }, { "AttributeName": misc_key_attr, "AttributeType": "N" } ] # Define the table key schema key_schema = [ { "AttributeName": partition_key, "KeyType": "HASH" }, { "AttributeName": sort_key, "KeyType": "RANGE" } ] # Define the provisioned throughput for the table provisioned_throughput = { "ReadCapacityUnits": table_provisioned_read_units, "WriteCapacityUnits": table_provisioned_write_units } # Define the global secondary index gsi_key_schema = [ { "AttributeName": sort_key, "KeyType": "HASH" }, { "AttributeName": misc_key_attr, "KeyType": "RANGE" } ] gsi_projection = { "ProjectionType": "INCLUDE", "NonKeyAttributes": [non_key_attr] } gsi_provisioned_throughput = { "ReadCapacityUnits": gsi_provisioned_read_units, "WriteCapacityUnits": gsi_provisioned_write_units } gsi_warm_throughput = { "ReadUnitsPerSecond": gsi_warm_reads, "WriteUnitsPerSecond": gsi_warm_writes } global_secondary_indexes = [ { "IndexName": gsi_name, "KeySchema": gsi_key_schema, "Projection": gsi_projection, "ProvisionedThroughput": gsi_provisioned_throughput, "WarmThroughput": gsi_warm_throughput } ] # Define the warm throughput for the table warm_throughput = { "ReadUnitsPerSecond": table_warm_reads, "WriteUnitsPerSecond": table_warm_writes } # Create the DynamoDB client and create the table response = ddb.create_table( TableName=table_name, AttributeDefinitions=attribute_definitions, KeySchema=key_schema, ProvisionedThroughput=provisioned_throughput, GlobalSecondaryIndexes=global_secondary_indexes, WarmThroughput=warm_throughput ) print(response) except ClientError as e: print(f"Error creating table: {e}") raise e
  • For API details, see CreateTable in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to create a web application that tracks work items in an Amazon DynamoDB table and uses Amazon Simple Email Service (Amazon SES) to send reports.

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) to create a REST service that tracks work items in Amazon DynamoDB and emails reports by using Amazon Simple Email Service (Amazon SES). This example uses the Flask web framework to handle HTTP routing and integrates with a React webpage to present a fully functional web application.

  • Build a Flask REST service that integrates with AWS services.

  • Read, write, and update work items that are stored in a DynamoDB table.

  • Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example in the AWS Code Examples Repository on GitHub.

Services used in this example
  • DynamoDB

  • Amazon SES

The following code example shows how to create a chat application that is served by a websocket API built on Amazon API Gateway.

SDK for Python (Boto3)

Shows how to use the AWS SDK for Python (Boto3) with Amazon API Gateway V2 to create a websocket API that integrates with AWS Lambda and Amazon DynamoDB.

  • Create a websocket API served by API Gateway.

  • Define a Lambda handler that stores connections in DynamoDB and posts messages to other chat participants.

  • Connect to the websocket chat application and send messages with the Websockets package.

For complete source code and instructions on how to set up and run, see the full example on GitHub.

Services used in this example
  • API Gateway

  • DynamoDB

  • Lambda

The following code example shows how to create an item with TTL.

SDK for Python (Boto3)
import boto3 from datetime import datetime, timedelta def create_dynamodb_item(table_name, region, primary_key, sort_key): """ Creates a DynamoDB item with an attached expiry attribute. :param table_name: Table name for the boto3 resource to target when creating an item :param region: string representing the AWS region. Example: `us-east-1` :param primary_key: one attribute known as the partition key. :param sort_key: Also known as a range attribute. :return: Void (nothing) """ try: dynamodb = boto3.resource('dynamodb', region_name=region) table = dynamodb.Table(table_name) # Get the current time in epoch second format current_time = int(datetime.now().timestamp()) # Calculate the expiration time (90 days from now) in epoch second format expiration_time = int((datetime.now() + timedelta(days=90)).timestamp()) item = { 'primaryKey': primary_key, 'sortKey': sort_key, 'creationDate': current_time, 'expireAt': expiration_time } table.put_item(Item=item) print("Item created successfully.") except Exception as e: print(f"Error creating item: {e}") raise # Use your own values create_dynamodb_item('your-table-name', 'us-west-2', 'your-partition-key-value', 'your-sort-key-value')
  • For API details, see PutItem in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to:

  • Get a batch of items by running multiple SELECT statements.

  • Add a batch of items by running multiple INSERT statements.

  • Update a batch of items by running multiple UPDATE statements.

  • Delete a batch of items by running multiple DELETE statements.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create a class that can run batches of PartiQL statements.

from datetime import datetime from decimal import Decimal import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError from scaffold import Scaffold logger = logging.getLogger(__name__) class PartiQLBatchWrapper: """ Encapsulates a DynamoDB resource to run PartiQL statements. """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource def run_partiql(self, statements, param_list): """ Runs a PartiQL statement. A Boto3 resource is used even though `execute_statement` is called on the underlying `client` object because the resource transforms input and output from plain old Python objects (POPOs) to the DynamoDB format. If you create the client directly, you must do these transforms yourself. :param statements: The batch of PartiQL statements. :param param_list: The batch of PartiQL parameters that are associated with each statement. This list must be in the same order as the statements. :return: The responses returned from running the statements, if any. """ try: output = self.dyn_resource.meta.client.batch_execute_statement( Statements=[ {"Statement": statement, "Parameters": params} for statement, params in zip(statements, param_list) ] ) except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": logger.error( "Couldn't execute batch of PartiQL statements because the table " "does not exist." ) else: logger.error( "Couldn't execute batch of PartiQL statements. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return output

Run a scenario that creates a table and runs PartiQL queries in batches.

def run_scenario(scaffold, wrapper, table_name): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") print("-" * 88) print("Welcome to the Amazon DynamoDB PartiQL batch statement demo.") print("-" * 88) print(f"Creating table '{table_name}' for the demo...") scaffold.create_table(table_name) print("-" * 88) movie_data = [ { "title": f"House PartiQL", "year": datetime.now().year - 5, "info": { "plot": "Wacky high jinks result from querying a mysterious database.", "rating": Decimal("8.5"), }, }, { "title": f"House PartiQL 2", "year": datetime.now().year - 3, "info": { "plot": "Moderate high jinks result from querying another mysterious database.", "rating": Decimal("6.5"), }, }, { "title": f"House PartiQL 3", "year": datetime.now().year - 1, "info": { "plot": "Tepid high jinks result from querying yet another mysterious database.", "rating": Decimal("2.5"), }, }, ] print(f"Inserting a batch of movies into table '{table_name}.") statements = [ f'INSERT INTO "{table_name}" ' f"VALUE {{'title': ?, 'year': ?, 'info': ?}}" ] * len(movie_data) params = [list(movie.values()) for movie in movie_data] wrapper.run_partiql(statements, params) print("Success!") print("-" * 88) print(f"Getting data for a batch of movies.") statements = [f'SELECT * FROM "{table_name}" WHERE title=? AND year=?'] * len( movie_data ) params = [[movie["title"], movie["year"]] for movie in movie_data] output = wrapper.run_partiql(statements, params) for item in output["Responses"]: print(f"\n{item['Item']['title']}, {item['Item']['year']}") pprint(item["Item"]) print("-" * 88) ratings = [Decimal("7.7"), Decimal("5.5"), Decimal("1.3")] print(f"Updating a batch of movies with new ratings.") statements = [ f'UPDATE "{table_name}" SET info.rating=? ' f"WHERE title=? AND year=?" ] * len(movie_data) params = [ [rating, movie["title"], movie["year"]] for rating, movie in zip(ratings, movie_data) ] wrapper.run_partiql(statements, params) print("Success!") print("-" * 88) print(f"Getting projected data from the table to verify our update.") output = wrapper.dyn_resource.meta.client.execute_statement( Statement=f'SELECT title, info.rating FROM "{table_name}"' ) pprint(output["Items"]) print("-" * 88) print(f"Deleting a batch of movies from the table.") statements = [f'DELETE FROM "{table_name}" WHERE title=? AND year=?'] * len( movie_data ) params = [[movie["title"], movie["year"]] for movie in movie_data] wrapper.run_partiql(statements, params) print("Success!") print("-" * 88) print(f"Deleting table '{table_name}'...") scaffold.delete_table() print("-" * 88) print("\nThanks for watching!") print("-" * 88) if __name__ == "__main__": try: dyn_res = boto3.resource("dynamodb") scaffold = Scaffold(dyn_res) movies = PartiQLBatchWrapper(dyn_res) run_scenario(scaffold, movies, "doc-example-table-partiql-movies") except Exception as e: print(f"Something went wrong with the demo! Here's what: {e}")

The following code example shows how to:

  • Get an item by running a SELECT statement.

  • Add an item by running an INSERT statement.

  • Update an item by running an UPDATE statement.

  • Delete an item by running a DELETE statement.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Create a class that can run PartiQL statements.

from datetime import datetime from decimal import Decimal import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError from scaffold import Scaffold logger = logging.getLogger(__name__) class PartiQLWrapper: """ Encapsulates a DynamoDB resource to run PartiQL statements. """ def __init__(self, dyn_resource): """ :param dyn_resource: A Boto3 DynamoDB resource. """ self.dyn_resource = dyn_resource def run_partiql(self, statement, params): """ Runs a PartiQL statement. A Boto3 resource is used even though `execute_statement` is called on the underlying `client` object because the resource transforms input and output from plain old Python objects (POPOs) to the DynamoDB format. If you create the client directly, you must do these transforms yourself. :param statement: The PartiQL statement. :param params: The list of PartiQL parameters. These are applied to the statement in the order they are listed. :return: The items returned from the statement, if any. """ try: output = self.dyn_resource.meta.client.execute_statement( Statement=statement, Parameters=params ) except ClientError as err: if err.response["Error"]["Code"] == "ResourceNotFoundException": logger.error( "Couldn't execute PartiQL '%s' because the table does not exist.", statement, ) else: logger.error( "Couldn't execute PartiQL '%s'. Here's why: %s: %s", statement, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return output

Run a scenario that creates a table and runs PartiQL queries.

def run_scenario(scaffold, wrapper, table_name): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") print("-" * 88) print("Welcome to the Amazon DynamoDB PartiQL single statement demo.") print("-" * 88) print(f"Creating table '{table_name}' for the demo...") scaffold.create_table(table_name) print("-" * 88) title = "24 Hour PartiQL People" year = datetime.now().year plot = "A group of data developers discover a new query language they can't stop using." rating = Decimal("9.9") print(f"Inserting movie '{title}' released in {year}.") wrapper.run_partiql( f"INSERT INTO \"{table_name}\" VALUE {{'title': ?, 'year': ?, 'info': ?}}", [title, year, {"plot": plot, "rating": rating}], ) print("Success!") print("-" * 88) print(f"Getting data for movie '{title}' released in {year}.") output = wrapper.run_partiql( f'SELECT * FROM "{table_name}" WHERE title=? AND year=?', [title, year] ) for item in output["Items"]: print(f"\n{item['title']}, {item['year']}") pprint(output["Items"]) print("-" * 88) rating = Decimal("2.4") print(f"Updating movie '{title}' with a rating of {float(rating)}.") wrapper.run_partiql( f'UPDATE "{table_name}" SET info.rating=? WHERE title=? AND year=?', [rating, title, year], ) print("Success!") print("-" * 88) print(f"Getting data again to verify our update.") output = wrapper.run_partiql( f'SELECT * FROM "{table_name}" WHERE title=? AND year=?', [title, year] ) for item in output["Items"]: print(f"\n{item['title']}, {item['year']}") pprint(output["Items"]) print("-" * 88) print(f"Deleting movie '{title}' released in {year}.") wrapper.run_partiql( f'DELETE FROM "{table_name}" WHERE title=? AND year=?', [title, year] ) print("Success!") print("-" * 88) print(f"Deleting table '{table_name}'...") scaffold.delete_table() print("-" * 88) print("\nThanks for watching!") print("-" * 88) if __name__ == "__main__": try: dyn_res = boto3.resource("dynamodb") scaffold = Scaffold(dyn_res) movies = PartiQLWrapper(dyn_res) run_scenario(scaffold, movies, "doc-example-table-partiql-movies") except Exception as e: print(f"Something went wrong with the demo! Here's what: {e}")
  • For API details, see ExecuteStatement in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to query for TTL items.

SDK for Python (Boto3)
import boto3 from datetime import datetime def query_dynamodb_items(table_name, partition_key): """ :param table_name: Name of the DynamoDB table :param partition_key: :return: """ try: # Initialize a DynamoDB resource dynamodb = boto3.resource('dynamodb', region_name='us-east-1') # Specify your table table = dynamodb.Table(table_name) # Get the current time in epoch format current_time = int(datetime.now().timestamp()) # Perform the query operation with a filter expression to exclude expired items # response = table.query( # KeyConditionExpression=boto3.dynamodb.conditions.Key('partitionKey').eq(partition_key), # FilterExpression=boto3.dynamodb.conditions.Attr('expireAt').gt(current_time) # ) response = table.query( KeyConditionExpression=dynamodb.conditions.Key('partitionKey').eq(partition_key), FilterExpression=dynamodb.conditions.Attr('expireAt').gt(current_time) ) # Print the items that are not expired for item in response['Items']: print(item) except Exception as e: print(f"Error querying items: {e}") # Call the function with your values query_dynamodb_items('Music', 'your-partition-key-value')
  • For API details, see Query in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to update a table's warm throughput setting.

SDK for Python (Boto3)
from boto3 import resource from botocore.exceptions import ClientError def update_dynamodb_table_warm_throughput(table_name, table_read_units, table_write_units, gsi_name, gsi_read_units, gsi_write_units, region_name="us-east-1"): """ Updates the warm throughput of a DynamoDB table and a global secondary index. :param table_name: The name of the table to update. :param table_read_units: The new read units per second for the table's warm throughput. :param table_write_units: The new write units per second for the table's warm throughput. :param gsi_name: The name of the global secondary index to update. :param gsi_read_units: The new read units per second for the GSI's warm throughput. :param gsi_write_units: The new write units per second for the GSI's warm throughput. :param region_name: The AWS Region name to target. defaults to us-east-1 """ try: ddb = resource('dynamodb', region_name) # Update the table's warm throughput table_warm_throughput = { "ReadUnitsPerSecond": table_read_units, "WriteUnitsPerSecond": table_write_units } # Update the global secondary index's warm throughput gsi_warm_throughput = { "ReadUnitsPerSecond": gsi_read_units, "WriteUnitsPerSecond": gsi_write_units } # Construct the global secondary index update global_secondary_index_update = [ { "Update": { "IndexName": gsi_name, "WarmThroughput": gsi_warm_throughput } } ] # Construct the update table request update_table_request = { "TableName": table_name, "GlobalSecondaryIndexUpdates": global_secondary_index_update, "WarmThroughput": table_warm_throughput } # Update the table ddb.update_table(**update_table_request) print("Table updated successfully!") except ClientError as e: print(f"Error updating table: {e}") raise e
  • For API details, see UpdateTable in AWS SDK for Python (Boto3) API Reference.

The following code example shows how to update an item's TTL.

SDK for Python (Boto3)
import boto3 from datetime import datetime, timedelta def update_dynamodb_item(table_name, region, primary_key, sort_key): """ Update an existing DynamoDB item with a TTL. :param table_name: Name of the DynamoDB table :param region: AWS Region of the table - example `us-east-1` :param primary_key: one attribute known as the partition key. :param sort_key: Also known as a range attribute. :return: Void (nothing) """ try: # Create the DynamoDB resource. dynamodb = boto3.resource('dynamodb', region_name=region) table = dynamodb.Table(table_name) # Get the current time in epoch second format current_time = int(datetime.now().timestamp()) # Calculate the expireAt time (90 days from now) in epoch second format expire_at = int((datetime.now() + timedelta(days=90)).timestamp()) table.update_item( Key={ 'partitionKey': primary_key, 'sortKey': sort_key }, UpdateExpression="set updatedAt=:c, expireAt=:e", ExpressionAttributeValues={ ':c': current_time, ':e': expire_at }, ) print("Item updated successfully.") except Exception as e: print(f"Error updating item: {e}") # Replace with your own values update_dynamodb_item('your-table-name', 'us-west-2', 'your-partition-key-value', 'your-sort-key-value')
  • For API details, see UpdateItem in AWS SDK for Python (Boto3) API Reference.

Serverless examples

The following code example shows how to implement a Lambda function that receives an event triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB payload and logs the record contents.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Python.

import json def lambda_handler(event, context): print(json.dumps(event, indent=2)) for record in event['Records']: log_dynamodb_record(record) def log_dynamodb_record(record): print(record['eventID']) print(record['eventName']) print(f"DynamoDB Record: {json.dumps(record['dynamodb'])}")

The following code example shows how to implement partial batch response for Lambda functions that receive events from a DynamoDB stream. The function reports the batch item failures in the response, signaling to Lambda to retry those messages later.

SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Python.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 def handler(event, context): records = event.get("Records") curRecordSequenceNumber = "" for record in records: try: # Process your record curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"] except Exception as e: # Return failed record's sequence number return {"batchItemFailures":[{"itemIdentifier": curRecordSequenceNumber}]} return {"batchItemFailures":[]}