Integration von Amazon SageMaker Experiments - Amazon SageMaker

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Integration von Amazon SageMaker Experiments

Amazon SageMaker Pipelines ist eng mit Amazon SageMaker Experiments integriert. Wenn Pipelines eine Pipeline erstellt und ausführt, werden standardmäßig die folgenden SageMaker Experiments-Entitäten erstellt, sofern sie nicht existieren:

  • Ein Experiment für die Pipeline

  • Eine Ausführungsgruppe für jede Ausführung der Pipeline

  • Ein Lauf, der der Ausführungsgruppe für jeden SageMaker Job hinzugefügt wird, der in einem Pipeline-Ausführungsschritt erstellt wurde

Sie können Metriken wie die Genauigkeit des Modelltrainings über mehrere Pipeline-Ausführungen hinweg genauso vergleichen, wie Sie solche Metriken über mehrere Ausführungsgruppen eines SageMaker Modelltrainingsexperiments hinweg vergleichen können.

Das folgende Beispiel zeigt die relevanten Parameter der Pipeline-Klasse in Amazon SageMaker Python SDK.

Pipeline( name="MyPipeline", parameters=[...], pipeline_experiment_config=PipelineExperimentConfig( ExecutionVariables.PIPELINE_NAME, ExecutionVariables.PIPELINE_EXECUTION_ID ), steps=[...] )

Wenn Sie nicht möchten, dass eine Experiment- und Laufgruppe für die Pipeline erstellt wird, setzen Sie pipeline_experiment_config auf None.

Anmerkung

Die Integration von Experimenten wurde in Amazon SageMaker Python SDK v2.41.0 eingeführt.

Je nachdem, was Sie für die Parameter ExperimentName und TrialName von pipeline_experiment_config angeben, gelten die folgenden Benennungsregeln:

  • Wenn Sie ExperimentName nicht angeben, wird die Pipeline name für den Experimentnamen verwendet.

    Wenn Sie ExperimentName angeben, wird es für den Namen des Experiments verwendet. Wenn ein Experiment mit diesem Namen existiert, werden die von der Pipeline erstellten Versuchsgruppen dem vorhandenen Experiment hinzugefügt. Wenn ein Experiment mit diesem Namen nicht existiert, wird ein neues Experiment erstellt.

  • Wenn Sie TrialName nicht angeben, wird die Pipeline-Ausführungs-ID für den Namen der Ausführungsgruppe verwendet.

    Wenn Sie TrialName angeben, wird sie für den Namen der Ausführungsgruppe verwendet. Wenn eine Ausführungsgruppe mit diesem Namen existiert, werden die von der Pipeline erstellten Verläufe der vorhandenen Ausführungsgruppe hinzugefügt. Wenn eine Ausführungsgruppe mit diesem Namen nicht existiert, wird eine neue Ausführungsgruppe erstellt.

Anmerkung

Die Experiment-Entitäten werden nicht gelöscht, wenn die Pipeline, die die Entitäten erstellt hat, gelöscht wird. Sie können die SageMaker Experimente verwenden, um die API Entitäten zu löschen.

Informationen zum Anzeigen der mit einer Pipeline verknüpften SageMaker Experiment-Entitäten finden Sie unterGreifen Sie auf Versuchsdaten aus einer Pipeline zu. Weitere Informationen zu SageMaker Experimenten finden Sie unter SageMaker Amazon-Experimente in Studio Classic.

Die folgenden Abschnitte zeigen Beispiele für die vorherigen Regeln und wie sie in der Pipeline-Definitionsdatei dargestellt werden. Weitere Informationen zu Pipeline-Definitionsdateien finden Sie unter Überblick über die Pipelines.