Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Lift-and-shift Python-Code mit dem @step -Decorator

Fokusmodus
Lift-and-shift Python-Code mit dem @step -Decorator - Amazon SageMaker KI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Der @step Decorator ist eine Funktion, die Ihren lokalen ML-Code (Machine Learning) in einen oder mehrere Pipeline-Schritte umwandelt. Sie können Ihre ML-Funktion so schreiben, wie Sie es für jedes ML-Projekt tun würden. Nachdem Sie die Funktion lokal oder als Schulungsaufgabe mit dem @remote Decorator getestet haben, können Sie sie in einen SageMaker KI-Pipeline-Schritt umwandeln, indem Sie einen @step Decorator hinzufügen. Anschließend können Sie die Ausgabe des @step mit -dekorierten Funktionen versehenen Funktionsaufrufs als Schritt an Pipelines übergeben, um eine Pipeline zu erstellen und auszuführen. Sie können eine Reihe von Funktionen mit dem @step Decorator verketten, um auch eine mehrstufige DAG-Pipeline (Directed Acyclic Graph) zu erstellen.

Das Setup für die Verwendung des @step Decorators entspricht dem Setup für die Verwendung des Decorators. @remote Einzelheiten zur Einrichtung der Umgebung und zur Verwendung einer Konfigurationsdatei zum Festlegen von Standardeinstellungen finden Sie in der Dokumentation zur Remote-Funktion. Weitere Informationen zum @step Decorator finden Sie unter sagemaker.workflow.function_step.step.

Beispiele für Notizbücher, die die Verwendung von Decorator demonstrieren, finden Sie unter @step decorator-Beispielnotizbücher. @step

In den folgenden Abschnitten wird erklärt, wie Sie Ihren lokalen ML-Code mit einem @step Decorator annotieren können, um einen Schritt zu erstellen, mithilfe des Schritts eine Pipeline zu erstellen und auszuführen und das Erlebnis an Ihren Anwendungsfall anzupassen.

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.