Invoca a Anthropic Claude en Amazon Bedrock utilizando el modelo Invoke API - Amazon Bedrock

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Invoca a Anthropic Claude en Amazon Bedrock utilizando el modelo Invoke API

Los siguientes ejemplos de código muestran cómo enviar un mensaje de texto a Anthropic Claude mediante el modelo Invoke. API

.NET
AWS SDK for .NET
nota

Hay más información al respecto GitHub. Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Usa el modelo Invoke API para enviar un mensaje de texto.

// Use the native inference API to send a text message to Anthropic Claude. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { anthropic_version = "bedrock-2023-05-31", max_tokens = 512, temperature = 0.5, messages = new[] { new { role = "user", content = userMessage } } }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["content"]?[0]?["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for .NET APIReferencia.

Go
SDKpara Go V2
nota

Hay más información GitHub. Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Invoque el modelo fundacional Anthropic Claude 2 para generar texto.

import ( "context" "encoding/json" "log" "strings" "github.com/aws/aws-sdk-go-v2/aws" "github.com/aws/aws-sdk-go-v2/service/bedrockruntime" ) // InvokeModelWrapper encapsulates Amazon Bedrock actions used in the examples. // It contains a Bedrock Runtime client that is used to invoke foundation models. type InvokeModelWrapper struct { BedrockRuntimeClient *bedrockruntime.Client } // Each model provider has their own individual request and response formats. // For the format, ranges, and default values for Anthropic Claude, refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html type ClaudeRequest struct { Prompt string `json:"prompt"` MaxTokensToSample int `json:"max_tokens_to_sample"` Temperature float64 `json:"temperature,omitempty"` StopSequences []string `json:"stop_sequences,omitempty"` } type ClaudeResponse struct { Completion string `json:"completion"` } // Invokes Anthropic Claude on Amazon Bedrock to run an inference using the input // provided in the request body. func (wrapper InvokeModelWrapper) InvokeClaude(ctx context.Context, prompt string) (string, error) { modelId := "anthropic.claude-v2" // Anthropic Claude requires enclosing the prompt as follows: enclosedPrompt := "Human: " + prompt + "\n\nAssistant:" body, err := json.Marshal(ClaudeRequest{ Prompt: enclosedPrompt, MaxTokensToSample: 200, Temperature: 0.5, StopSequences: []string{"\n\nHuman:"}, }) if err != nil { log.Fatal("failed to marshal", err) } output, err := wrapper.BedrockRuntimeClient.InvokeModel(ctx, &bedrockruntime.InvokeModelInput{ ModelId: aws.String(modelId), ContentType: aws.String("application/json"), Body: body, }) if err != nil { ProcessError(err, modelId) } var response ClaudeResponse if err := json.Unmarshal(output.Body, &response); err != nil { log.Fatal("failed to unmarshal", err) } return response.Completion, nil }
  • Para API obtener más información, consulte InvokeModella AWS SDK para Go APIReferencia.

Java
SDKpara Java 2.x
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Usa el modelo Invoke API para enviar un mensaje de texto.

// Use the native inference API to send a text message to Anthropic Claude. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html var nativeRequestTemplate = """ { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 512, "temperature": 0.5, "messages": [{ "role": "user", "content": "{{prompt}}" }] }"""; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/content/0/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
  • Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.

JavaScript
SDKpara JavaScript (v3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Usa el modelo Invoke API para enviar un mensaje de texto.

import { fileURLToPath } from "node:url"; import { FoundationModels } from "../../config/foundation_models.js"; import { BedrockRuntimeClient, InvokeModelCommand, InvokeModelWithResponseStreamCommand, } from "@aws-sdk/client-bedrock-runtime"; /** * @typedef {Object} ResponseContent * @property {string} text * * @typedef {Object} MessagesResponseBody * @property {ResponseContent[]} content * * @typedef {Object} Delta * @property {string} text * * @typedef {Object} Message * @property {string} role * * @typedef {Object} Chunk * @property {string} type * @property {Delta} delta * @property {Message} message */ /** * Invokes Anthropic Claude 3 using the Messages API. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModel = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the response. const command = new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {MessagesResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); return responseBody.content[0].text; }; /** * Invokes Anthropic Claude 3 and processes the response stream. * * To learn more about the Anthropic Messages API, go to: * https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html * * @param {string} prompt - The input text prompt for the model to complete. * @param {string} [modelId] - The ID of the model to use. Defaults to "anthropic.claude-3-haiku-20240307-v1:0". */ export const invokeModelWithResponseStream = async ( prompt, modelId = "anthropic.claude-3-haiku-20240307-v1:0", ) => { // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: "us-east-1" }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [ { role: "user", content: [{ type: "text", text: prompt }], }, ], }; // Invoke Claude with the payload and wait for the API to respond. const command = new InvokeModelWithResponseStreamCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId, }); const apiResponse = await client.send(command); let completeMessage = ""; // Decode and process the response stream for await (const item of apiResponse.body) { /** @type Chunk */ const chunk = JSON.parse(new TextDecoder().decode(item.chunk.bytes)); const chunk_type = chunk.type; if (chunk_type === "content_block_delta") { const text = chunk.delta.text; completeMessage = completeMessage + text; process.stdout.write(text); } } // Return the final response return completeMessage; }; // Invoke the function if this file was run directly. if (process.argv[1] === fileURLToPath(import.meta.url)) { const prompt = 'Write a paragraph starting with: "Once upon a time..."'; const modelId = FoundationModels.CLAUDE_3_HAIKU.modelId; console.log(`Prompt: ${prompt}`); console.log(`Model ID: ${modelId}`); try { console.log("-".repeat(53)); const response = await invokeModel(prompt, modelId); console.log(`\n${"-".repeat(53)}`); console.log("Final structured response:"); console.log(response); } catch (err) { console.log(`\n${err}`); } }
  • Para API obtener más información, consulte InvokeModella AWS SDK for JavaScript APIReferencia.

PHP
SDK para PHP
nota

Hay más información sobre GitHub. Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Invoque el modelo fundacional Anthropic Claude 2 para generar texto.

public function invokeClaude($prompt) { // The different model providers have individual request and response formats. // For the format, ranges, and default values for Anthropic Claude, refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html $completion = ""; try { $modelId = 'anthropic.claude-v2'; // Claude requires you to enclose the prompt as follows: $prompt = "\n\nHuman: {$prompt}\n\nAssistant:"; $body = [ 'prompt' => $prompt, 'max_tokens_to_sample' => 200, 'temperature' => 0.5, 'stop_sequences' => ["\n\nHuman:"], ]; $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $completion = $response_body->completion; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $completion; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for PHP APIReferencia.

Python
SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Usa el modelo Invoke API para enviar un mensaje de texto.

# Use the native inference API to send a text message to Anthropic Claude. import boto3 import json from botocore.exceptions import ClientError # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Claude 3 Haiku. model_id = "anthropic.claude-3-haiku-20240307-v1:0" # Define the prompt for the model. prompt = "Describe the purpose of a 'hello world' program in one line." # Format the request payload using the model's native structure. native_request = { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 512, "temperature": 0.5, "messages": [ { "role": "user", "content": [{"type": "text", "text": prompt}], } ], } # Convert the native request to JSON. request = json.dumps(native_request) try: # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") exit(1) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract and print the response text. response_text = model_response["content"][0]["text"] print(response_text)
  • Para API obtener más información, consulte InvokeModella AWS SDKreferencia de Python (Boto3). API

SAP ABAP
SDKpara SAP ABAP
nota

Hay más información GitHub. Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Invoque el modelo fundacional Anthropic Claude 2 para generar texto. En este ejemplo, se utilizan funciones of /US2/CL _ JSON que podrían no estar disponibles en algunas NetWeaver versiones.

"Claude V2 Input Parameters should be in a format like this: * { * "prompt":"\n\nHuman:\\nTell me a joke\n\nAssistant:\n", * "max_tokens_to_sample":2048, * "temperature":0.5, * "top_k":250, * "top_p":1.0, * "stop_sequences":[] * } DATA: BEGIN OF ls_input, prompt TYPE string, max_tokens_to_sample TYPE /aws1/rt_shape_integer, temperature TYPE /aws1/rt_shape_float, top_k TYPE /aws1/rt_shape_integer, top_p TYPE /aws1/rt_shape_float, stop_sequences TYPE /aws1/rt_stringtab, END OF ls_input. "Leave ls_input-stop_sequences empty. ls_input-prompt = |\n\nHuman:\\n{ iv_prompt }\n\nAssistant:\n|. ls_input-max_tokens_to_sample = 2048. ls_input-temperature = '0.5'. ls_input-top_k = 250. ls_input-top_p = 1. "Serialize into JSON with /ui2/cl_json -- this assumes SAP_UI is installed. DATA(lv_json) = /ui2/cl_json=>serialize( data = ls_input pretty_name = /ui2/cl_json=>pretty_mode-low_case ). TRY. DATA(lo_response) = lo_bdr->invokemodel( iv_body = /aws1/cl_rt_util=>string_to_xstring( lv_json ) iv_modelid = 'anthropic.claude-v2' iv_accept = 'application/json' iv_contenttype = 'application/json' ). "Claude V2 Response format will be: * { * "completion": "Knock Knock...", * "stop_reason": "stop_sequence" * } DATA: BEGIN OF ls_response, completion TYPE string, stop_reason TYPE string, END OF ls_response. /ui2/cl_json=>deserialize( EXPORTING jsonx = lo_response->get_body( ) pretty_name = /ui2/cl_json=>pretty_mode-camel_case CHANGING data = ls_response ). DATA(lv_answer) = ls_response-completion. CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.

Invocación del modelo fundacional Anthropic Claude 2 para generar texto con el cliente de alto nivel L2.

TRY. DATA(lo_bdr_l2_claude) = /aws1/cl_bdr_l2_factory=>create_claude_2( lo_bdr ). " iv_prompt can contain a prompt like 'tell me a joke about Java programmers'. DATA(lv_answer) = lo_bdr_l2_claude->prompt_for_text( iv_prompt ). CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.

Invocación del modelo fundacional Anthropic Claude 3 para generar texto con el cliente de alto nivel L2.

TRY. " Choose a model ID from Anthropic that supports the Messages API - currently this is " Claude v2, Claude v3 and v3.5. For the list of model ID, see: " https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html " for the list of models that support the Messages API see: " https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html DATA(lo_bdr_l2_claude) = /aws1/cl_bdr_l2_factory=>create_anthropic_msg_api( io_bdr = lo_bdr iv_model_id = 'anthropic.claude-3-sonnet-20240229-v1:0' ). " choosing Claude v3 Sonnet " iv_prompt can contain a prompt like 'tell me a joke about Java programmers'. DATA(lv_answer) = lo_bdr_l2_claude->prompt_for_text( iv_prompt = iv_prompt iv_max_tokens = 100 ). CATCH /aws1/cx_bdraccessdeniedex INTO DATA(lo_ex). WRITE / lo_ex->get_text( ). WRITE / |Don't forget to enable model access at https://console.aws.amazon.com/bedrock/home?#/modelaccess|. ENDTRY.
  • Para API obtener más información, consulte InvokeModelSAPABAPAPIcomo referencia.AWS SDK

Para obtener una lista completa de guías para AWS SDK desarrolladores y ejemplos de código, consulteUso de Amazon Bedrock con un AWS SDK. En este tema también se incluye información sobre cómo empezar y detalles sobre SDK las versiones anteriores.