Amazon Titan Modelos de texto - Amazon Bedrock

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Amazon Titan Modelos de texto

Los modelos de Amazon Titan Text admiten los siguientes parámetros de inferencia.

Para obtener más información sobre las Titan Envíe un mensaje de texto a las directrices de ingeniería, consulte Titan Pautas de ingeniería de Text Prompt.

Para obtener más información sobre las Titan modelos, verDescripción general de Amazon Titan modelos.

Solicitud y respuesta

El cuerpo de la solicitud se pasa al body campo de una InvokeModelWithResponseStreamsolicitud InvokeModelo.

Request
{ "inputText": string, "textGenerationConfig": { "temperature": float, "topP": float, "maxTokenCount": int, "stopSequences": [string] } }

Se requieren los siguientes parámetros:

  • inputText— El mensaje que proporciona el modelo para generar una respuesta. Para generar respuestas en un estilo conversacional, ajuste el mensaje con el siguiente formato:

    "inputText": "User: <prompt>\nBot:

La textGenerationConfig es opcional. Puede usarlo para configurar los siguientes parámetros de inferencia:

  • temperatura: utilice un valor más bajo para reducir la aleatoriedad de las respuestas.

    Predeterminado Mínimo Máximo
    0.7 0.0 1.0
  • TopP: utilice un valor más bajo para ignorar las opciones menos probables y reducir la diversidad de respuestas.

    Predeterminado Mínimo Máximo
    0.9 0.0 1.0
  • maxTokenCount— Especifique la cantidad máxima de fichas que se generarán en la respuesta. Los límites máximos de fichas se aplican estrictamente.

    Modelo Predeterminado Mínimo Máximo
    Titan Text Lite 512 0 4.096
    Titan Text Express 512 0 8 192
    Titan Text Premier 512 0 3.072
  • stopSequences— Especifique una secuencia de caracteres para indicar dónde debe detenerse el modelo.

InvokeModel Response
{ "inputTextTokenCount": int, "results": [{ "tokenCount": int, "outputText": "\n<response>\n", "completionReason": "string" }] }

El cuerpo de la respuesta contiene los siguientes campos:

  • inputTextTokenRecuento: el número de fichas de la solicitud.

  • resultados: matriz de un elemento, un objeto que contiene los siguientes campos:

    • tokenCount— El número de fichas de la respuesta.

    • outputText: el texto de la respuesta.

    • completionReason— El motivo por el que se terminó de generar la respuesta. Los motivos posibles son los siguientes:

      • FINISHED: la respuesta se generó por completo.

      • LENGTH— La respuesta se ha truncado debido a la longitud de respuesta que has establecido.

      • STOP_ CRITERIA _ MET — La respuesta se truncó porque se alcanzó el criterio de parada.

      • RAG_ QUERY _ _ WHEN RAG _ DISABLED — La función está deshabilitada y no puede completar la consulta.

      • CONTENT_ FILTERED — El contenido se filtró o eliminó mediante el filtro de contenido aplicado.

InvokeModelWithResponseStream Response

Cada fragmento de texto del cuerpo del flujo de respuesta tiene el siguiente formato. Debe decodificar el campo bytes (consulte Envíe un único mensaje con las InvokeModel API operaciones para ver un ejemplo).

{ "chunk": { "bytes": b'{ "index": int, "inputTextTokenCount": int, "totalOutputTextTokenCount": int, "outputText": "<response-chunk>", "completionReason": "string" }' } }
  • índice: el índice del fragmento de la respuesta de transmisión.

  • inputTextTokenRecuento: el número de fichas que aparecen en el mensaje.

  • totalOutputTextTokenCount— El número de fichas de la respuesta.

  • outputText: el texto de la respuesta.

  • completionReason— El motivo por el que se terminó de generar la respuesta. Es posible que se den las siguientes razones.

    • FINISHED: la respuesta se generó por completo.

    • LENGTH— La respuesta se truncó debido a la longitud de respuesta que estableciste.

    • STOP_ CRITERIA _ MET — La respuesta se truncó porque se alcanzó el criterio de parada.

    • RAG_ QUERY _ _ WHEN RAG _ DISABLED — La función está deshabilitada y no puede completar la consulta.

    • CONTENT_ FILTERED — El contenido se filtró o eliminó mediante el filtro aplicado.

Ejemplos de código

El siguiente ejemplo muestra cómo ejecutar inferencias con Amazon Titan Modelo Text Premier con PythonSDK.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to create a list of action items from a meeting transcript with the Amazon Titan Text model (on demand). """ import json import logging import boto3 from botocore.exceptions import ClientError class ImageError(Exception): "Custom exception for errors returned by Amazon Titan Text models" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using Amazon Titan Text models on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (json): The response from the model. """ logger.info( "Generating text with Amazon Titan Text model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get("body").read()) finish_reason = response_body.get("error") if finish_reason is not None: raise ImageError(f"Text generation error. Error is {finish_reason}") logger.info( "Successfully generated text with Amazon Titan Text model %s", model_id) return response_body def main(): """ Entrypoint for Amazon Titan Text model example. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") # You can replace the model_id with any other Titan Text Models # Titan Text Model family model_id is as mentioned below: # amazon.titan-text-premier-v1:0, amazon.titan-text-express-v1, amazon.titan-text-lite-v1 model_id = 'amazon.titan-text-premier-v1:0' prompt = """Meeting transcript: Miguel: Hi Brant, I want to discuss the workstream for our new product launch Brant: Sure Miguel, is there anything in particular you want to discuss? Miguel: Yes, I want to talk about how users enter into the product. Brant: Ok, in that case let me add in Namita. Namita: Hey everyone Brant: Hi Namita, Miguel wants to discuss how users enter into the product. Miguel: its too complicated and we should remove friction. for example, why do I need to fill out additional forms? I also find it difficult to find where to access the product when I first land on the landing page. Brant: I would also add that I think there are too many steps. Namita: Ok, I can work on the landing page to make the product more discoverable but brant can you work on the additonal forms? Brant: Yes but I would need to work with James from another team as he needs to unblock the sign up workflow. Miguel can you document any other concerns so that I can discuss with James only once? Miguel: Sure. From the meeting transcript above, Create a list of action items for each person. """ body = json.dumps({ "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 3072, "stopSequences": [], "temperature": 0.7, "topP": 0.9 } }) response_body = generate_text(model_id, body) print(f"Input token count: {response_body['inputTextTokenCount']}") for result in response_body['results']: print(f"Token count: {result['tokenCount']}") print(f"Output text: {result['outputText']}") print(f"Completion reason: {result['completionReason']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except ImageError as err: logger.error(err.message) print(err.message) else: print( f"Finished generating text with the Amazon Titan Text Premier model {model_id}.") if __name__ == "__main__": main()

El siguiente ejemplo muestra cómo ejecutar inferencias con Amazon Titan Text G1 - Express modela con PythonSDK.

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to create a list of action items from a meeting transcript with the Amazon &titan-text-express; model (on demand). """ import json import logging import boto3 from botocore.exceptions import ClientError class ImageError(Exception): "Custom exception for errors returned by Amazon &titan-text-express; model" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using Amazon &titan-text-express; model on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (json): The response from the model. """ logger.info( "Generating text with Amazon &titan-text-express; model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get("body").read()) finish_reason = response_body.get("error") if finish_reason is not None: raise ImageError(f"Text generation error. Error is {finish_reason}") logger.info( "Successfully generated text with Amazon &titan-text-express; model %s", model_id) return response_body def main(): """ Entrypoint for Amazon &titan-text-express; example. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = 'amazon.titan-text-express-v1' prompt = """Meeting transcript: Miguel: Hi Brant, I want to discuss the workstream for our new product launch Brant: Sure Miguel, is there anything in particular you want to discuss? Miguel: Yes, I want to talk about how users enter into the product. Brant: Ok, in that case let me add in Namita. Namita: Hey everyone Brant: Hi Namita, Miguel wants to discuss how users enter into the product. Miguel: its too complicated and we should remove friction. for example, why do I need to fill out additional forms? I also find it difficult to find where to access the product when I first land on the landing page. Brant: I would also add that I think there are too many steps. Namita: Ok, I can work on the landing page to make the product more discoverable but brant can you work on the additonal forms? Brant: Yes but I would need to work with James from another team as he needs to unblock the sign up workflow. Miguel can you document any other concerns so that I can discuss with James only once? Miguel: Sure. From the meeting transcript above, Create a list of action items for each person. """ body = json.dumps({ "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 4096, "stopSequences": [], "temperature": 0, "topP": 1 } }) response_body = generate_text(model_id, body) print(f"Input token count: {response_body['inputTextTokenCount']}") for result in response_body['results']: print(f"Token count: {result['tokenCount']}") print(f"Output text: {result['outputText']}") print(f"Completion reason: {result['completionReason']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except ImageError as err: logger.error(err.message) print(err.message) else: print( f"Finished generating text with the Amazon &titan-text-express; model {model_id}.") if __name__ == "__main__": main()