Hay más AWS SDK ejemplos disponibles en el GitHub repositorio de AWS Doc SDK Examples
Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Busca ejemplos de Lookout for Vision SDK usando Python (Boto3)
Los siguientes ejemplos de código muestran cómo realizar acciones e implementar escenarios comunes AWS SDK for Python (Boto3) con Lookout for Vision.
Las acciones son extractos de código de programas más grandes y deben ejecutarse en contexto. Mientras las acciones muestran cómo llamar a las funciones de servicio individuales, es posible ver las acciones en contexto en los escenarios relacionados.
Los escenarios son ejemplos de código que muestran cómo llevar a cabo una tarea específica a través de llamadas a varias funciones dentro del servicio o combinado con otros Servicios de AWS.
Cada ejemplo incluye un enlace al código fuente completo, donde puede encontrar instrucciones sobre cómo configurar y ejecutar el código en su contexto.
Introducción
En el siguiente ejemplo de código se muestra cómo empezar a utilizar Lookout for Vision.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. """ This example shows how to list your Amazon Lookout for Vision projects. If you haven't previously created a project in the current AWS Region, the response is an empty list, however it confirms that you can call the Lookout for Vision API. """ from botocore.exceptions import ClientError import boto3 class Hello: """Hello class for Amazon Lookout for Vision""" @staticmethod def list_projects(lookoutvision_client): """ Lists information about the projects that are in your AWS account and in the current AWS Region. : param lookoutvision_client: A Boto3 Lookout for Vision client. """ try: response = lookoutvision_client.list_projects() for project in response["Projects"]: print("Project: " + project["ProjectName"]) print("ARN: " + project["ProjectArn"]) print() print("Done!") except ClientError as err: print(f"Couldn't list projects. \n{err}") raise def main(): session = boto3.Session(profile_name="lookoutvision-access") lookoutvision_client = session.client("lookoutvision") Hello.list_projects(lookoutvision_client) if __name__ == "__main__": main()
-
Para API obtener más información, consulte ListProjectsla AWS SDKreferencia de Python (Boto3). API
-
Temas
Acciones
En el siguiente ejemplo de código se muestra cómo usar CreateDataset
.
Para obtener información, consulte Crear su conjunto de datos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Datasets: @staticmethod def create_dataset(lookoutvision_client, project_name, manifest_file, dataset_type): """ Creates a new Lookout for Vision dataset :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project_name: The name of the project in which you want to create a dataset. :param bucket: The bucket that contains the manifest file. :param manifest_file: The path and name of the manifest file. :param dataset_type: The type of the dataset (train or test). """ try: bucket, key = manifest_file.replace("s3://", "").split("/", 1) logger.info("Creating %s dataset type...", dataset_type) dataset = { "GroundTruthManifest": {"S3Object": {"Bucket": bucket, "Key": key}} } response = lookoutvision_client.create_dataset( ProjectName=project_name, DatasetType=dataset_type, DatasetSource=dataset, ) logger.info("Dataset Status: %s", response["DatasetMetadata"]["Status"]) logger.info( "Dataset Status Message: %s", response["DatasetMetadata"]["StatusMessage"], ) logger.info("Dataset Type: %s", response["DatasetMetadata"]["DatasetType"]) # Wait until either created or failed. finished = False status = "" dataset_description = {} while finished is False: dataset_description = lookoutvision_client.describe_dataset( ProjectName=project_name, DatasetType=dataset_type ) status = dataset_description["DatasetDescription"]["Status"] if status == "CREATE_IN_PROGRESS": logger.info("Dataset creation in progress...") time.sleep(2) elif status == "CREATE_COMPLETE": logger.info("Dataset created.") finished = True else: logger.info( "Dataset creation failed: %s", dataset_description["DatasetDescription"]["StatusMessage"], ) finished = True if status != "CREATE_COMPLETE": message = dataset_description["DatasetDescription"]["StatusMessage"] logger.exception("Couldn't create dataset: %s", message) raise Exception(f"Couldn't create dataset: {message}") except ClientError: logger.exception("Service error: Couldn't create dataset.") raise
-
Para API obtener más información, consulte CreateDatasetla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar CreateModel
.
Para obtener información, consulte Entrenar su modelo.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Models: @staticmethod def create_model( lookoutvision_client, project_name, training_results, tag_key=None, tag_key_value=None, ): """ Creates a version of a Lookout for Vision model. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project in which you want to create a model. :param training_results: The Amazon S3 location where training results are stored. :param tag_key: The key for a tag to add to the model. :param tag_key_value - A value associated with the tag_key. return: The model status and version. """ try: logger.info("Training model...") output_bucket, output_folder = training_results.replace("s3://", "").split( "/", 1 ) output_config = { "S3Location": {"Bucket": output_bucket, "Prefix": output_folder} } tags = [] if tag_key is not None: tags = [{"Key": tag_key, "Value": tag_key_value}] response = lookoutvision_client.create_model( ProjectName=project_name, OutputConfig=output_config, Tags=tags ) logger.info("ARN: %s", response["ModelMetadata"]["ModelArn"]) logger.info("Version: %s", response["ModelMetadata"]["ModelVersion"]) logger.info("Started training...") print("Training started. Training might take several hours to complete.") # Wait until training completes. finished = False status = "UNKNOWN" while finished is False: model_description = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=response["ModelMetadata"]["ModelVersion"], ) status = model_description["ModelDescription"]["Status"] if status == "TRAINING": logger.info("Model training in progress...") time.sleep(600) continue if status == "TRAINED": logger.info("Model was successfully trained.") else: logger.info( "Model training failed: %s ", model_description["ModelDescription"]["StatusMessage"], ) finished = True except ClientError: logger.exception("Couldn't train model.") raise else: return status, response["ModelMetadata"]["ModelVersion"]
-
Para API obtener más información, consulte CreateModella AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar CreateProject
.
Para obtener información, consulte Crear su proyecto.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Projects: @staticmethod def create_project(lookoutvision_client, project_name): """ Creates a new Lookout for Vision project. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name for the new project. :return project_arn: The ARN of the new project. """ try: logger.info("Creating project: %s", project_name) response = lookoutvision_client.create_project(ProjectName=project_name) project_arn = response["ProjectMetadata"]["ProjectArn"] logger.info("project ARN: %s", project_arn) except ClientError: logger.exception("Couldn't create project %s.", project_name) raise else: return project_arn
-
Para API obtener más información, consulte CreateProjectla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DeleteDataset
.
Para obtener información, consulte Eliminar un conjunto de datos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Datasets: @staticmethod def delete_dataset(lookoutvision_client, project_name, dataset_type): """ Deletes a Lookout for Vision dataset :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the dataset that you want to delete. :param dataset_type: The type (train or test) of the dataset that you want to delete. """ try: logger.info( "Deleting the %s dataset for project %s.", dataset_type, project_name ) lookoutvision_client.delete_dataset( ProjectName=project_name, DatasetType=dataset_type ) logger.info("Dataset deleted.") except ClientError: logger.exception("Service error: Couldn't delete dataset.") raise
-
Para API obtener más información, consulte DeleteDatasetla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DeleteModel
.
Para obtener información, consulte Eliminar un modelo.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Models: @staticmethod def delete_model(lookoutvision_client, project_name, model_version): """ Deletes a Lookout for Vision model. The model must first be stopped and can't be in training. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the desired model. :param model_version: The version of the model that you want to delete. """ try: logger.info("Deleting model: %s", model_version) lookoutvision_client.delete_model( ProjectName=project_name, ModelVersion=model_version ) model_exists = True while model_exists: response = lookoutvision_client.list_models(ProjectName=project_name) model_exists = False for model in response["Models"]: if model["ModelVersion"] == model_version: model_exists = True if model_exists is False: logger.info("Model deleted") else: logger.info("Model is being deleted...") time.sleep(2) logger.info("Deleted Model: %s", model_version) except ClientError: logger.exception("Couldn't delete model.") raise
-
Para API obtener más información, consulte DeleteModella AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DeleteProject
.
Para obtener información, consulte Eliminar un proyecto.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Projects: @staticmethod def delete_project(lookoutvision_client, project_name): """ Deletes a Lookout for Vision Model :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that you want to delete. """ try: logger.info("Deleting project: %s", project_name) response = lookoutvision_client.delete_project(ProjectName=project_name) logger.info("Deleted project ARN: %s ", response["ProjectArn"]) except ClientError as err: logger.exception("Couldn't delete project %s.", project_name) raise
-
Para API obtener más información, consulte DeleteProjectla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DescribeDataset
.
Para obtener información, consulte Visualizar su conjunto de datos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Datasets: @staticmethod def describe_dataset(lookoutvision_client, project_name, dataset_type): """ Gets information about a Lookout for Vision dataset. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the dataset that you want to describe. :param dataset_type: The type (train or test) of the dataset that you want to describe. """ try: response = lookoutvision_client.describe_dataset( ProjectName=project_name, DatasetType=dataset_type ) print(f"Name: {response['DatasetDescription']['ProjectName']}") print(f"Type: {response['DatasetDescription']['DatasetType']}") print(f"Status: {response['DatasetDescription']['Status']}") print(f"Message: {response['DatasetDescription']['StatusMessage']}") print(f"Images: {response['DatasetDescription']['ImageStats']['Total']}") print(f"Labeled: {response['DatasetDescription']['ImageStats']['Labeled']}") print(f"Normal: {response['DatasetDescription']['ImageStats']['Normal']}") print(f"Anomaly: {response['DatasetDescription']['ImageStats']['Anomaly']}") except ClientError: logger.exception("Service error: problem listing datasets.") raise print("Done.")
-
Para API obtener más información, consulte DescribeDatasetla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DescribeModel
.
Para obtener información, consulte Visualizar sus modelos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Models: @staticmethod def describe_model(lookoutvision_client, project_name, model_version): """ Shows the performance metrics for a trained model. :param lookoutvision_client: A Boto3 Amazon Lookout for Vision client. :param project_name: The name of the project that contains the desired model. :param model_version: The version of the model. """ response = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=model_version ) model_description = response["ModelDescription"] print(f"\tModel version: {model_description['ModelVersion']}") print(f"\tARN: {model_description['ModelArn']}") if "Description" in model_description: print(f"\tDescription: {model_description['Description']}") print(f"\tStatus: {model_description['Status']}") print(f"\tMessage: {model_description['StatusMessage']}") print(f"\tCreated: {str(model_description['CreationTimestamp'])}") if model_description["Status"] in ("TRAINED", "HOSTED"): training_start = model_description["CreationTimestamp"] training_end = model_description["EvaluationEndTimestamp"] duration = training_end - training_start print(f"\tTraining duration: {duration}") print("\n\tPerformance metrics\n\t-------------------") print(f"\tRecall: {model_description['Performance']['Recall']}") print(f"\tPrecision: {model_description['Performance']['Precision']}") print(f"\tF1: {model_description['Performance']['F1Score']}") training_output_bucket = model_description["OutputConfig"]["S3Location"][ "Bucket" ] prefix = model_description["OutputConfig"]["S3Location"]["Prefix"] print(f"\tTraining output: s3://{training_output_bucket}/{prefix}")
-
Para API obtener más información, consulte DescribeModella AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar DetectAnomalies
.
Para obtener información, consulte Detectar anomalías en una imagen.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Inference: """ Shows how to detect anomalies in an image using a trained Lookout for Vision model. """ @staticmethod def detect_anomalies(lookoutvision_client, project_name, model_version, photo): """ Calls DetectAnomalies using the supplied project, model version, and image. :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project: The project that contains the model that you want to use. :param model_version: The version of the model that you want to use. :param photo: The photo that you want to analyze. :return: The DetectAnomalyResult object that contains the analysis results. """ image_type = imghdr.what(photo) if image_type == "jpeg": content_type = "image/jpeg" elif image_type == "png": content_type = "image/png" else: logger.info("Image type not valid for %s", photo) raise ValueError( f"File format not valid. Supply a jpeg or png format file: {photo}" ) # Get images bytes for call to detect_anomalies. with open(photo, "rb") as image: response = lookoutvision_client.detect_anomalies( ProjectName=project_name, ContentType=content_type, Body=image.read(), ModelVersion=model_version, ) return response["DetectAnomalyResult"] @staticmethod def download_from_s3(s3_resource, photo): """ Downloads an image from an S3 bucket. :param s3_resource: A Boto3 Amazon S3 resource. :param photo: The Amazon S3 path of a photo to download. return: The local path to the downloaded file. """ try: bucket, key = photo.replace("s3://", "").split("/", 1) local_file = os.path.basename(photo) except ValueError: logger.exception("Couldn't get S3 info for %s", photo) raise try: logger.info("Downloading %s", photo) s3_resource.Bucket(bucket).download_file(key, local_file) except ClientError: logger.exception("Couldn't download %s from S3.", photo) raise return local_file @staticmethod def reject_on_classification(image, prediction, confidence_limit): """ Returns True if the anomaly confidence is greater than or equal to the supplied confidence limit. :param image: The name of the image file that was analyzed. :param prediction: The DetectAnomalyResult object returned from DetectAnomalies. :param confidence_limit: The minimum acceptable confidence (float 0 - 1). :return: True if the error condition indicates an anomaly, otherwise False. """ reject = False logger.info("Checking classification for %s", image) if prediction["IsAnomalous"] and prediction["Confidence"] >= confidence_limit: reject = True reject_info = ( f"Rejected: Anomaly confidence ({prediction['Confidence']:.2%}) is greater" f" than limit ({confidence_limit:.2%})" ) logger.info("%s", reject_info) if not reject: logger.info("No anomalies found.") return reject @staticmethod def reject_on_anomaly_types( image, prediction, confidence_limit, anomaly_types_limit ): """ Checks if the number of anomaly types is greater than the anomaly types limit and if the prediction confidence is greater than the confidence limit. :param image: The name of the image file that was analyzed. :param prediction: The DetectAnomalyResult object returned from DetectAnomalies. :param confidence: The minimum acceptable confidence (float 0 - 1). :param anomaly_types_limit: The maximum number of allowable anomaly types (int). :return: True if the error condition indicates an anomaly, otherwise False. """ logger.info("Checking number of anomaly types for %s", image) reject = False if prediction["IsAnomalous"] and prediction["Confidence"] >= confidence_limit: anomaly_types = { anomaly["Name"] for anomaly in prediction["Anomalies"] if anomaly["Name"] != "background" } if len(anomaly_types) > anomaly_types_limit: reject = True reject_info = ( f"Rejected: Anomaly confidence ({prediction['Confidence']:.2%}) " f"is greater than limit ({confidence_limit:.2%}) and " f"the number of anomaly types ({len(anomaly_types)-1}) is " f"greater than the limit ({anomaly_types_limit})" ) logger.info("%s", reject_info) if not reject: logger.info("No anomalies found.") return reject @staticmethod def reject_on_coverage( image, prediction, confidence_limit, anomaly_label, coverage_limit ): """ Checks if the coverage area of an anomaly is greater than the coverage limit and if the prediction confidence is greater than the confidence limit. :param image: The name of the image file that was analyzed. :param prediction: The DetectAnomalyResult object returned from DetectAnomalies. :param confidence_limit: The minimum acceptable confidence (float 0-1). :anomaly_label: The anomaly label for the type of anomaly that you want to check. :coverage_limit: The maximum acceptable percentage coverage of an anomaly (float 0-1). :return: True if the error condition indicates an anomaly, otherwise False. """ reject = False logger.info("Checking coverage for %s", image) if prediction["IsAnomalous"] and prediction["Confidence"] >= confidence_limit: for anomaly in prediction["Anomalies"]: if anomaly["Name"] == anomaly_label and anomaly["PixelAnomaly"][ "TotalPercentageArea" ] > (coverage_limit): reject = True reject_info = ( f"Rejected: Anomaly confidence ({prediction['Confidence']:.2%}) " f"is greater than limit ({confidence_limit:.2%}) and {anomaly['Name']} " f"coverage ({anomaly['PixelAnomaly']['TotalPercentageArea']:.2%}) " f"is greater than limit ({coverage_limit:.2%})" ) logger.info("%s", reject_info) if not reject: logger.info("No anomalies found.") return reject @staticmethod def analyze_image(lookoutvision_client, image, config): """ Analyzes an image with an Amazon Lookout for Vision model. Also runs a series of checks to determine if the contents of an image should be rejected. :param lookoutvision_client: A Lookout for Vision Boto3 client. param image: A local image that you want to analyze. param config: Configuration information for the model and reject limits. """ project = config["project"] model_version = config["model_version"] confidence_limit = config["confidence_limit"] coverage_limit = config["coverage_limit"] anomaly_types_limit = config["anomaly_types_limit"] anomaly_label = config["anomaly_label"] # Get analysis results. print(f"Analyzing {image}.") prediction = Inference.detect_anomalies( lookoutvision_client, project, model_version, image ) anomalies = [] reject = Inference.reject_on_classification(image, prediction, confidence_limit) if reject: anomalies.append("Classification: An anomaly was found.") reject = Inference.reject_on_coverage( image, prediction, confidence_limit, anomaly_label, coverage_limit ) if reject: anomalies.append("Coverage: Anomaly coverage too high.") reject = Inference.reject_on_anomaly_types( image, prediction, confidence_limit, anomaly_types_limit ) if reject: anomalies.append("Anomaly type count: Too many anomaly types found.") print() if len(anomalies) > 0: print(f"Anomalies found in {image}") for anomaly in anomalies: print(f"{anomaly}") else: print(f"No anomalies found in {image}") def main(): """ Detects anomalies in an image file. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") parser = argparse.ArgumentParser( description="Find anomalies with Amazon Lookout for Vision." ) parser.add_argument( "image", help="The file that you want to analyze. Supply a local file path or a " "path to an S3 object.", ) parser.add_argument( "config", help=( "The configuration JSON file to use. " "See https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/" "python/example_code/lookoutvision/README.md" ), ) args = parser.parse_args() session = boto3.Session(profile_name="lookoutvision-access") lookoutvision_client = session.client("lookoutvision") s3_resource = session.resource("s3") # Get configuration information. with open(args.config, encoding="utf-8") as config_file: config = json.load(config_file) # Download image if located in S3 bucket. if args.image.startswith("s3://"): image = Inference.download_from_s3(s3_resource, args.image) else: image = args.image Inference.analyze_image(lookoutvision_client, image, config) # Delete image, if downloaded from S3 bucket. if args.image.startswith("s3://"): os.remove(image) except ClientError as err: print(f"Service error: {err.response['Error']['Message']}") except FileNotFoundError as err: print(f"The supplied file couldn't be found: {err.filename}.") except ValueError as err: print(f"A value error occurred: {err}.") else: print("\nSuccessfully completed analysis.") if __name__ == "__main__": main()
-
Para API obtener más información, consulte DetectAnomaliesla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar ListModels
.
Para obtener información, consulte Visualizar sus modelos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Models: @staticmethod def describe_models(lookoutvision_client, project_name): """ Gets information about all models in a Lookout for Vision project. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that you want to use. """ try: response = lookoutvision_client.list_models(ProjectName=project_name) print("Project: " + project_name) for model in response["Models"]: Models.describe_model( lookoutvision_client, project_name, model["ModelVersion"] ) print() print("Done...") except ClientError: logger.exception("Couldn't list models.") raise
-
Para API obtener más información, consulte ListModelsla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar ListProjects
.
Para obtener información, consulte Visualizar sus proyectos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Projects: @staticmethod def list_projects(lookoutvision_client): """ Lists information about the projects that are in in your AWS account and in the current AWS Region. :param lookoutvision_client: A Boto3 Lookout for Vision client. """ try: response = lookoutvision_client.list_projects() for project in response["Projects"]: print("Project: " + project["ProjectName"]) print("\tARN: " + project["ProjectArn"]) print("\tCreated: " + str(["CreationTimestamp"])) print("Datasets") project_description = lookoutvision_client.describe_project( ProjectName=project["ProjectName"] ) if not project_description["ProjectDescription"]["Datasets"]: print("\tNo datasets") else: for dataset in project_description["ProjectDescription"][ "Datasets" ]: print(f"\ttype: {dataset['DatasetType']}") print(f"\tStatus: {dataset['StatusMessage']}") print("Models") response_models = lookoutvision_client.list_models( ProjectName=project["ProjectName"] ) if not response_models["Models"]: print("\tNo models") else: for model in response_models["Models"]: Models.describe_model( lookoutvision_client, project["ProjectName"], model["ModelVersion"], ) print("------------------------------------------------------------\n") print("Done!") except ClientError: logger.exception("Problem listing projects.") raise
-
Para API obtener más información, consulte ListProjectsla AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar StartModel
.
Para obtener información, consulte Iniciar su modelo.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Hosting: @staticmethod def start_model( lookoutvision_client, project_name, model_version, min_inference_units ): """ Starts the hosting of a Lookout for Vision model. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the version of the model that you want to start hosting. :param model_version: The version of the model that you want to start hosting. :param min_inference_units: The number of inference units to use for hosting. """ try: logger.info( "Starting model version %s for project %s", model_version, project_name ) lookoutvision_client.start_model( ProjectName=project_name, ModelVersion=model_version, MinInferenceUnits=min_inference_units, ) print("Starting hosting...") status = "" finished = False # Wait until hosted or failed. while finished is False: model_description = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=model_version ) status = model_description["ModelDescription"]["Status"] if status == "STARTING_HOSTING": logger.info("Host starting in progress...") time.sleep(10) continue if status == "HOSTED": logger.info("Model is hosted and ready for use.") finished = True continue logger.info("Model hosting failed and the model can't be used.") finished = True if status != "HOSTED": logger.error("Error hosting model: %s", status) raise Exception(f"Error hosting model: {status}") except ClientError: logger.exception("Couldn't host model.") raise
-
Para API obtener más información, consulte StartModella AWS SDKreferencia de Python (Boto3). API
-
En el siguiente ejemplo de código se muestra cómo usar StopModel
.
Para obtener información, consulte Detener su modelo.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Hosting: @staticmethod def stop_model(lookoutvision_client, project_name, model_version): """ Stops a running Lookout for Vision Model. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the version of the model that you want to stop hosting. :param model_version: The version of the model that you want to stop hosting. """ try: logger.info("Stopping model version %s for %s", model_version, project_name) response = lookoutvision_client.stop_model( ProjectName=project_name, ModelVersion=model_version ) logger.info("Stopping hosting...") status = response["Status"] finished = False # Wait until stopped or failed. while finished is False: model_description = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=model_version ) status = model_description["ModelDescription"]["Status"] if status == "STOPPING_HOSTING": logger.info("Host stopping in progress...") time.sleep(10) continue if status == "TRAINED": logger.info("Model is no longer hosted.") finished = True continue logger.info("Failed to stop model: %s ", status) finished = True if status != "TRAINED": logger.error("Error stopping model: %s", status) raise Exception(f"Error stopping model: {status}") except ClientError: logger.exception("Couldn't stop hosting model.") raise
-
Para API obtener más información, consulte StopModella AWS SDKreferencia de Python (Boto3). API
-
Escenarios
En el siguiente ejemplo de código, se muestra cómo crear un archivo de manifiesto de Lookout for Vision y cargarlo en Amazon S3.
Para obtener información, consulte .Crear un archivo de manifiesto.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Datasets: @staticmethod def create_manifest_file_s3(s3_resource, image_s3_path, manifest_s3_path): """ Creates a manifest file and uploads to Amazon S3. :param s3_resource: A Boto3 Amazon S3 resource. :param image_s3_path: The Amazon S3 path to the images referenced by the manifest file. The images must be in an Amazon S3 bucket with the following folder structure. s3://amzn-s3-demo-bucket/<train or test>/ normal/ anomaly/ Place normal images in the normal folder and anomalous images in the anomaly folder. :param manifest_s3_path: The Amazon S3 location in which to store the created manifest file. """ output_manifest_file = "temp.manifest" try: # Current date and time in manifest file format. dttm = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f") # Get bucket and folder from image and manifest file paths. bucket, prefix = image_s3_path.replace("s3://", "").split("/", 1) if prefix[-1] != "/": prefix += "/" manifest_bucket, manifest_prefix = manifest_s3_path.replace( "s3://", "" ).split("/", 1) with open(output_manifest_file, "w") as mfile: logger.info("Creating manifest file") src_bucket = s3_resource.Bucket(bucket) # Create JSON lines for anomalous images. for obj in src_bucket.objects.filter( Prefix=prefix + "anomaly/", Delimiter="/" ): image_path = f"s3://{src_bucket.name}/{obj.key}" manifest = Datasets.create_json_line(image_path, "anomaly", dttm) mfile.write(json.dumps(manifest) + "\n") # Create json lines for normal images. for obj in src_bucket.objects.filter( Prefix=prefix + "normal/", Delimiter="/" ): image_path = f"s3://{src_bucket.name}/{obj.key}" manifest = Datasets.create_json_line(image_path, "normal", dttm) mfile.write(json.dumps(manifest) + "\n") logger.info("Uploading manifest file to %s", manifest_s3_path) s3_resource.Bucket(manifest_bucket).upload_file( output_manifest_file, manifest_prefix ) except ClientError: logger.exception("Error uploading manifest.") raise except Exception: logger.exception("Error uploading manifest.") raise else: logger.info("Completed manifest file creation and upload.") finally: try: os.remove(output_manifest_file) except FileNotFoundError: pass @staticmethod def create_json_line(image, class_name, dttm): """ Creates a single JSON line for an image. :param image: The S3 location for the image. :param class_name: The class of the image (normal or anomaly) :param dttm: The date and time that the JSON is created. """ label = 0 if class_name == "normal": label = 0 elif class_name == "anomaly": label = 1 else: logger.error("Unexpected label value: %s for %s", label, image) raise Exception(f"Unexpected label value: {label} for {image}") manifest = { "source-ref": image, "anomaly-label": label, "anomaly-label-metadata": { "confidence": 1, "job-name": "labeling-job/anomaly-label", "class-name": class_name, "human-annotated": "yes", "creation-date": dttm, "type": "groundtruth/image-classification", }, } return manifest
El siguiente ejemplo de código muestra cómo crear, entrenar e iniciar un modelo de Lookout for Vision.
- SDKpara Python (Boto3)
-
Crea y, opcionalmente, inicia un modelo de Amazon Lookout for Vision mediante argumentos de línea de comandos. El código de ejemplo crea un proyecto, un conjunto de datos de entrenamiento, un conjunto de datos de prueba opcional y un modelo nuevos. Una vez finalizado el entrenamiento con el modelo, puede usar un script proporcionado para probar el modelo con una imagen.
Este ejemplo requiere un conjunto de imágenes para entrenar su modelo. Puede encontrar ejemplos de imágenes de placas de circuito GitHub que puede utilizar para entrenamiento y pruebas. Para obtener información sobre cómo copiar estas imágenes en un bucket de Amazon Simple Storage Service (Amazon S3), consulte Preparar imágenes de ejemplo.
Para ver el código fuente completo y las instrucciones sobre cómo configurarlo y ejecutarlo, consulta el ejemplo completo en GitHub
. Servicios utilizados en este ejemplo
Lookout for Vision
El siguiente ejemplo de código muestra cómo exportar los conjuntos de datos de un proyecto de Lookout for Vision.
Para obtener más información, consulte Exportación de conjuntos de datos de un proyecto (SDK).
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. """ Purpose Shows how to export the datasets (manifest files and images) from an Amazon Lookout for Vision project to a new Amazon S3 location. """ import argparse import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def copy_file(s3_resource, source_file, destination_file): """ Copies a file from a source Amazon S3 folder to a destination Amazon S3 folder. The destination can be in a different S3 bucket. :param s3: An Amazon S3 Boto3 resource. :param source_file: The Amazon S3 path to the source file. :param destination_file: The destination Amazon S3 path for the copy operation. """ source_bucket, source_key = source_file.replace("s3://", "").split("/", 1) destination_bucket, destination_key = destination_file.replace("s3://", "").split( "/", 1 ) try: bucket = s3_resource.Bucket(destination_bucket) dest_object = bucket.Object(destination_key) dest_object.copy_from(CopySource={"Bucket": source_bucket, "Key": source_key}) dest_object.wait_until_exists() logger.info("Copied %s to %s", source_file, destination_file) except ClientError as error: if error.response["Error"]["Code"] == "404": error_message = ( f"Failed to copy {source_file} to " f"{destination_file}. : {error.response['Error']['Message']}" ) logger.warning(error_message) error.response["Error"]["Message"] = error_message raise def upload_manifest_file(s3_resource, manifest_file, destination): """ Uploads a manifest file to a destination Amazon S3 folder. :param s3: An Amazon S3 Boto3 resource. :param manifest_file: The manifest file that you want to upload. :destination: The Amazon S3 folder location to upload the manifest file to. """ destination_bucket, destination_key = destination.replace("s3://", "").split("/", 1) bucket = s3_resource.Bucket(destination_bucket) put_data = open(manifest_file, "rb") obj = bucket.Object(destination_key + manifest_file) try: obj.put(Body=put_data) obj.wait_until_exists() logger.info("Put manifest file '%s' to bucket '%s'.", obj.key, obj.bucket_name) except ClientError: logger.exception( "Couldn't put manifest file '%s' to bucket '%s'.", obj.key, obj.bucket_name ) raise finally: if getattr(put_data, "close", None): put_data.close() def get_dataset_types(lookoutvision_client, project): """ Determines the types of the datasets (train or test) in an Amazon Lookout for Vision project. :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project: The Lookout for Vision project that you want to check. :return: The dataset types in the project. """ try: response = lookoutvision_client.describe_project(ProjectName=project) datasets = [] for dataset in response["ProjectDescription"]["Datasets"]: if dataset["Status"] in ("CREATE_COMPLETE", "UPDATE_COMPLETE"): datasets.append(dataset["DatasetType"]) return datasets except lookoutvision_client.exceptions.ResourceNotFoundException: logger.exception("Project %s not found.", project) raise def process_json_line(s3_resource, entry, dataset_type, destination): """ Creates a JSON line for a new manifest file, copies image and mask to destination. :param s3_resource: An Amazon S3 Boto3 resource. :param entry: A JSON line from the manifest file. :param dataset_type: The type (train or test) of the dataset that you want to create the manifest file for. :param destination: The destination Amazon S3 folder for the manifest file and dataset images. :return: A JSON line with details for the destination location. """ entry_json = json.loads(entry) print(f"source: {entry_json['source-ref']}") # Use existing folder paths to ensure console added image names don't clash. bucket, key = entry_json["source-ref"].replace("s3://", "").split("/", 1) logger.info("Source location: %s/%s", bucket, key) destination_image_location = destination + dataset_type + "/images/" + key copy_file(s3_resource, entry_json["source-ref"], destination_image_location) # Update JSON for writing. entry_json["source-ref"] = destination_image_location if "anomaly-mask-ref" in entry_json: source_anomaly_ref = entry_json["anomaly-mask-ref"] mask_bucket, mask_key = source_anomaly_ref.replace("s3://", "").split("/", 1) destination_mask_location = destination + dataset_type + "/masks/" + mask_key entry_json["anomaly-mask-ref"] = destination_mask_location copy_file(s3_resource, source_anomaly_ref, entry_json["anomaly-mask-ref"]) return entry_json def write_manifest_file( lookoutvision_client, s3_resource, project, dataset_type, destination ): """ Creates a manifest file for a dataset. Copies the manifest file and dataset images (and masks, if present) to the specified Amazon S3 destination. :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project: The Lookout for Vision project that you want to use. :param dataset_type: The type (train or test) of the dataset that you want to create the manifest file for. :param destination: The destination Amazon S3 folder for the manifest file and dataset images. """ try: # Create a reusable Paginator paginator = lookoutvision_client.get_paginator("list_dataset_entries") # Create a PageIterator from the Paginator page_iterator = paginator.paginate( ProjectName=project, DatasetType=dataset_type, PaginationConfig={"PageSize": 100}, ) output_manifest_file = dataset_type + ".manifest" # Create manifest file then upload to Amazon S3 with images. with open(output_manifest_file, "w", encoding="utf-8") as manifest_file: for page in page_iterator: for entry in page["DatasetEntries"]: try: entry_json = process_json_line( s3_resource, entry, dataset_type, destination ) manifest_file.write(json.dumps(entry_json) + "\n") except ClientError as error: if error.response["Error"]["Code"] == "404": print(error.response["Error"]["Message"]) print(f"Excluded JSON line: {entry}") else: raise upload_manifest_file( s3_resource, output_manifest_file, destination + "datasets/" ) except ClientError: logger.exception("Problem getting dataset_entries") raise def export_datasets(lookoutvision_client, s3_resource, project, destination): """ Exports the datasets from an Amazon Lookout for Vision project to a specified Amazon S3 destination. :param project: The Lookout for Vision project that you want to use. :param destination: The destination Amazon S3 folder for the exported datasets. """ # Add trailing backslash, if missing. destination = destination if destination[-1] == "/" else destination + "/" print(f"Exporting project {project} datasets to {destination}.") # Get each dataset and export to destination. dataset_types = get_dataset_types(lookoutvision_client, project) for dataset in dataset_types: logger.info("Copying %s dataset to %s.", dataset, destination) write_manifest_file( lookoutvision_client, s3_resource, project, dataset, destination ) print("Exported dataset locations") for dataset in dataset_types: print(f" {dataset}: {destination}datasets/{dataset}.manifest") print("Done.") def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument("project", help="The project that contains the dataset.") parser.add_argument("destination", help="The destination Amazon S3 folder.") def main(): """ Exports the datasets from an Amazon Lookout for Vision project to a destination Amazon S3 location. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() try: session = boto3.Session(profile_name="lookoutvision-access") lookoutvision_client = session.client("lookoutvision") s3_resource = session.resource("s3") export_datasets( lookoutvision_client, s3_resource, args.project, args.destination ) except ClientError as err: logger.exception(err) print(f"Failed: {format(err)}") if __name__ == "__main__": main()
El siguiente ejemplo de código muestra cómo encontrar un proyecto de Lookout for Vision con una etiqueta específica.
Para obtener información, consulte Etiquetar modelos.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. import logging import argparse import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def find_tag(tags, key, value): """ Finds a tag in the supplied list of tags. :param tags: A list of tags associated with a Lookout for Vision model. :param key: The tag to search for. :param value: The tag key value to search for. :return: True if the tag value exists, otherwise False. """ found = False for tag in tags: if key == tag["Key"]: logger.info("\t\tMatch found for tag: %s value: %s.", key, value) found = True break return found def find_tag_in_projects(lookoutvision_client, key, value): """ Finds Lookout for Vision models tagged with the supplied key and value. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param key: The tag key to find. :param value: The value of the tag that you want to find. return: A list of matching model versions (and model projects) that were found. """ try: found_tags = [] found = False projects = lookoutvision_client.list_projects() # Iterate through each project and models within a project. for project in projects["Projects"]: logger.info("Searching project: %s ...", project["ProjectName"]) response_models = lookoutvision_client.list_models( ProjectName=project["ProjectName"] ) for model in response_models["Models"]: model_description = lookoutvision_client.describe_model( ProjectName=project["ProjectName"], ModelVersion=model["ModelVersion"], ) tags = lookoutvision_client.list_tags_for_resource( ResourceArn=model_description["ModelDescription"]["ModelArn"] ) logger.info( "\tSearching model: %s for tag: %s value: %s.", model_description["ModelDescription"]["ModelArn"], key, value, ) if find_tag(tags["Tags"], key, value) is True: found = True logger.info( "\t\tMATCH: Project: %s: model version %s", project["ProjectName"], model_description["ModelDescription"]["ModelVersion"], ) found_tags.append( { "Project": project["ProjectName"], "ModelVersion": model_description["ModelDescription"][ "ModelVersion" ], } ) if found is False: logger.info("No match for tag %s with value %s.", key, value) except ClientError: logger.exception("Problem finding tags.") raise else: return found_tags def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) parser.add_argument("tag", help="The tag that you want to find.") parser.add_argument("value", help="The tag value that you want to find.") args = parser.parse_args() key = args.tag value = args.value session = boto3.Session(profile_name="lookoutvision-access") lookoutvision_client = session.client("lookoutvision") print(f"Searching your models for tag: {key} with value: {value}.") tagged_models = find_tag_in_projects(lookoutvision_client, key, value) print("Matched models\n--------------") if len(tagged_models) > 0: for model in tagged_models: print(f"Project: {model['Project']}. model version:{model['ModelVersion']}") else: print("No matches found.") if __name__ == "__main__": main()
El siguiente ejemplo de código muestra cómo enumerar los modelos Lookout for Vision que están alojados actualmente.
- SDKpara Python (Boto3)
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. class Hosting: @staticmethod def list_hosted(lookoutvision_client): """ Displays a list of models in your account that are currently hosted. :param lookoutvision_client: A Boto3 Lookout for Vision client. """ try: response = lookoutvision_client.list_projects() hosted = 0 print("Hosted models\n-------------") for project in response["Projects"]: response_models = lookoutvision_client.list_models( ProjectName=project["ProjectName"] ) for model in response_models["Models"]: model_description = lookoutvision_client.describe_model( ProjectName=project["ProjectName"], ModelVersion=model["ModelVersion"], ) if model_description["ModelDescription"]["Status"] == "HOSTED": print( f"Project: {project['ProjectName']} Model version: " f"{model['ModelVersion']}" ) hosted += 1 print(f"{hosted} model(s) hosted") except ClientError: logger.exception("Problem listing hosted models.") raise