End of support notice: On October 31, 2025, AWS
will discontinue support for Amazon Lookout for Vision. After October 31, 2025, you will
no longer be able to access the Lookout for Vision console or Lookout for Vision resources.
For more information, visit this
blog post.
Viewing your datasets
A project can have a single dataset that's used for training and testing your model.
Alternatively, You can have separate training and test datasets. You can use the console
to view your datasets. You can also use the DescribeDataset
operation to
get information about a dataset (training or test).
Viewing the datasets in a project
(console)
Perform the steps in the following procedure to view your project's datasets in the
console.
To view your datasets (console)
Open the Amazon Lookout for Vision console at https://console.aws.amazon.com/lookoutvision/.
Choose Get started.
In the left navigation pane, choose Projects.
On the Projects page, select the project that contains the datasets that
you want to view.
In the left navigation pane, choose Dataset to view the dataset details.
If you have a training and a test dataset, a tab for each dataset is
shown.
Viewing the datasets in a project (SDK)
You can use the DescribeDataset
operation to get information about the
training or test dataset associated with a project.
To view your datasets (SDK)
-
If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more information, see
Step 4: Set up the AWS CLI and AWS SDKs.
Use the following example code to view a dataset.
- CLI
-
Change the following values:
aws lookoutvision describe-dataset --project-name project name
\
--dataset-type train or test
\
--profile lookoutvision-access
- Python
-
This code is taken from the AWS Documentation SDK examples GitHub repository. See the full example
here.
@staticmethod
def describe_dataset(lookoutvision_client, project_name, dataset_type):
"""
Gets information about a Lookout for Vision dataset.
:param lookoutvision_client: A Boto3 Lookout for Vision client.
:param project_name: The name of the project that contains the dataset that
you want to describe.
:param dataset_type: The type (train or test) of the dataset that you want
to describe.
"""
try:
response = lookoutvision_client.describe_dataset(
ProjectName=project_name, DatasetType=dataset_type
)
print(f"Name: {response['DatasetDescription']['ProjectName']}")
print(f"Type: {response['DatasetDescription']['DatasetType']}")
print(f"Status: {response['DatasetDescription']['Status']}")
print(f"Message: {response['DatasetDescription']['StatusMessage']}")
print(f"Images: {response['DatasetDescription']['ImageStats']['Total']}")
print(f"Labeled: {response['DatasetDescription']['ImageStats']['Labeled']}")
print(f"Normal: {response['DatasetDescription']['ImageStats']['Normal']}")
print(f"Anomaly: {response['DatasetDescription']['ImageStats']['Anomaly']}")
except ClientError:
logger.exception("Service error: problem listing datasets.")
raise
print("Done.")
- Java V2
-
This code is taken from the AWS Documentation SDK examples GitHub repository. See the full example
here.
/**
* Gets the description for a Amazon Lookout for Vision dataset.
*
* @param lfvClient An Amazon Lookout for Vision client.
* @param projectName The name of the project in which you want to describe a
* dataset.
* @param datasetType The type of the dataset that you want to describe (train
* or test).
* @return DatasetDescription A description of the dataset.
*/
public static DatasetDescription describeDataset(LookoutVisionClient lfvClient,
String projectName,
String datasetType) throws LookoutVisionException {
logger.log(Level.INFO, "Describing {0} dataset for project {1}",
new Object[] { datasetType, projectName });
DescribeDatasetRequest describeDatasetRequest = DescribeDatasetRequest.builder()
.projectName(projectName)
.datasetType(datasetType)
.build();
DescribeDatasetResponse describeDatasetResponse = lfvClient.describeDataset(describeDatasetRequest);
DatasetDescription datasetDescription = describeDatasetResponse.datasetDescription();
logger.log(Level.INFO, "Project: {0}\n"
+ "Created: {1}\n"
+ "Type: {2}\n"
+ "Total: {3}\n"
+ "Labeled: {4}\n"
+ "Normal: {5}\n"
+ "Anomalous: {6}\n",
new Object[] {
datasetDescription.projectName(),
datasetDescription.creationTimestamp(),
datasetDescription.datasetType(),
datasetDescription.imageStats().total().toString(),
datasetDescription.imageStats().labeled().toString(),
datasetDescription.imageStats().normal().toString(),
datasetDescription.imageStats().anomaly().toString(),
});
return datasetDescription;
}