Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Limpieza de bases de datos de Aurora PostgreSQL en un entorno de Amazon MWAA
Amazon Managed Workflows para Apache Airflow utiliza una base de datos Aurora PostgreSQL como base de datos de metadatos de Apache Airflow, donde se ejecuta el DAG y se almacenan las instancias de tareas. La siguiente muestra de código borra periódicamente las entradas de la base de datos Aurora PostgreSQL dedicada a su entorno Amazon MWAA.
Versión
Requisitos previos
Para usar el código de muestra de esta página, necesitará lo siguiente:
Dependencias
Código de ejemplo
El siguiente DAG limpia la base de datos de metadatos de las tablas especificadas en TABLES_TO_CLEAN
. En el ejemplo, se eliminan los datos de las tablas especificadas con más de 30 días de antigüedad. Para ajustar el tiempo de eliminación de las entradas, establezca MAX_AGE_IN_DAYS
en un valor diferente.
- Apache Airflow v2.4 and later
-
from airflow import DAG
from airflow.models.param import Param
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago
from datetime import datetime, timedelta
# Note: Database commands may time out if running longer than 5 minutes. If this occurs, please increase the MAX_AGE_IN_DAYS (or change
# timestamp parameter to an earlier date) for initial runs, then reduce on subsequent runs until the desired retention is met.
MAX_AGE_IN_DAYS = 30
# To clean specific tables, please provide a comma-separated list per
# https://airflow.apache.org/docs/apache-airflow/stable/cli-and-env-variables-ref.html#clean
# A value of None will clean all tables
TABLES_TO_CLEAN = None
with DAG(
dag_id="clean_db_dag",
schedule_interval=None,
catchup=False,
start_date=days_ago(1),
params={
"timestamp": Param(
default=(datetime.now()-timedelta(days=MAX_AGE_IN_DAYS)).strftime("%Y-%m-%d %H:%M:%S"),
type="string",
minLength=1,
maxLength=255,
),
}
) as dag:
if TABLES_TO_CLEAN:
bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --tables '"+TABLES_TO_CLEAN+"' --skip-archive --yes"
else:
bash_command="airflow db clean --clean-before-timestamp '{{ params.timestamp }}' --skip-archive --yes"
cli_command = BashOperator(
task_id="bash_command",
bash_command=bash_command
)
- Apache Airflow v2.2 and earlier
-
from airflow import settings
from airflow.utils.dates import days_ago
from airflow.models import DagTag, DagModel, DagRun, ImportError, Log, SlaMiss, RenderedTaskInstanceFields, TaskInstance, TaskReschedule, XCom
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
from time import sleep
from airflow.version import version
major_version, minor_version = int(version.split('.')[0]), int(version.split('.')[1])
if major_version >= 2 and minor_version >= 6:
from airflow.jobs.job import Job
else:
# The BaseJob class was renamed as of Apache Airflow v2.6
from airflow.jobs.base_job import BaseJob as Job
# Delete entries for the past 30 days. Adjust MAX_AGE_IN_DAYS to set how far back this DAG cleans the database.
MAX_AGE_IN_DAYS = 30
MIN_AGE_IN_DAYS = 0
DECREMENT = -7
# This is a list of (table, time) tuples.
# table = the table to clean in the metadata database
# time = the column in the table associated to the timestamp of an entry
# or None if not applicable.
TABLES_TO_CLEAN = [[Job, Job.latest_heartbeat],
[TaskInstance, TaskInstance.execution_date],
[TaskReschedule, TaskReschedule.execution_date],
[DagTag, None],
[DagModel, DagModel.last_parsed_time],
[DagRun, DagRun.execution_date],
[ImportError, ImportError.timestamp],
[Log, Log.dttm],
[SlaMiss, SlaMiss.execution_date],
[RenderedTaskInstanceFields, RenderedTaskInstanceFields.execution_date],
[XCom, XCom.execution_date],
]
@task()
def cleanup_db_fn(x):
session = settings.Session()
if x[1]:
for oldest_days_ago in range(MAX_AGE_IN_DAYS, MIN_AGE_IN_DAYS, DECREMENT):
earliest_days_ago = max(oldest_days_ago + DECREMENT, MIN_AGE_IN_DAYS)
print(f"deleting {str(x[0])} entries between {earliest_days_ago} and {oldest_days_ago} days old...")
earliest_date = days_ago(earliest_days_ago)
oldest_date = days_ago(oldest_days_ago)
query = session.query(x[0]).filter(x[1] >= earliest_date).filter(x[1] <= oldest_date)
query.delete(synchronize_session= False)
session.commit()
sleep(5)
else:
# No time column specified for the table. Delete all entries
print("deleting", str(x[0]), "...")
query = session.query(x[0])
query.delete(synchronize_session= False)
session.commit()
session.close()
@dag(
dag_id="cleanup_db",
schedule_interval="@weekly",
start_date=days_ago(7),
catchup=False,
is_paused_upon_creation=False
)
def clean_db_dag_fn():
t_last=None
for x in TABLES_TO_CLEAN:
t=cleanup_db_fn(x)
if t_last:
t_last >> t
t_last = t
clean_db_dag = clean_db_dag_fn()