Búsqueda de rostros en vídeos almacenados - Amazon Rekognition

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Búsqueda de rostros en vídeos almacenados

Puede buscar una colección de rostros que coincida con rostros de personas detectados en un vídeo almacenado o un vídeo en streaming. En esta sección se explica la búsqueda de rostros en un vídeo almacenado. Para obtener información sobre la búsqueda de rostros en un vídeo en streaming, consulte Trabajar con eventos de vídeo en streaming.

Los rostros que busca se deben indexar primero en una colección utilizando IndexFaces. Para obtener más información, consulte Agregar rostros a una colección.

La búsqueda de rostros de Amazon Rekognition Video sigue el mismo flujo de trabajo asíncrono que otras operaciones de Amazon Rekognition Video que analizan vídeos almacenados en un bucket de Amazon S3. Para empezar a buscar rostros en un vídeo almacenado, llama StartFaceSearchy proporciona el identificador de la colección en la que deseas buscar. Amazon Rekognition Video publica el estado de finalización de una operación de análisis de vídeo en un tema de Amazon Simple Notification Service (Amazon SNS). Si el análisis de vídeo es correcto, llame a GetFaceSearch para obtener los resultados de la búsqueda. Para obtener más información sobre cómo iniciar el análisis de vídeo y obtener los resultados, consulte Cómo llamar a las operaciones de Amazon Rekognition Video.

El siguiente procedimiento muestra cómo buscar una colección de rostros que coincide con los rostros de las personas detectados en un vídeo. El procedimiento también muestra cómo obtener los datos de seguimiento de las personas que coinciden en el vídeo. El procedimiento amplía el código de Análisis de un vídeo almacenado en un bucket de Amazon S3 con Java o Python (SDK), que utiliza una cola de Amazon Simple Queue Service (Amazon SQS) para obtener el estado de realización de una solicitud de análisis de vídeo.

Para buscar rostros coincidentes en un vídeo (SDK)
  1. Crear una colección.

  2. Indexe un rostro en la colección.

  3. Realice Análisis de un vídeo almacenado en un bucket de Amazon S3 con Java o Python (SDK).

  4. Añada el código siguiente a la clase VideoDetect que ha creado en el paso 3.

    Java
    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) //Face collection search in video ================================================================== private static void StartFaceSearchCollection(String bucket, String video, String collection) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartFaceSearchRequest req = new StartFaceSearchRequest() .withCollectionId(collection) .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withNotificationChannel(channel); StartFaceSearchResult startPersonCollectionSearchResult = rek.startFaceSearch(req); startJobId=startPersonCollectionSearchResult.getJobId(); } //Face collection search in video ================================================================== private static void GetFaceSearchCollectionResults() throws Exception{ GetFaceSearchResult faceSearchResult=null; int maxResults=10; String paginationToken=null; do { if (faceSearchResult !=null){ paginationToken = faceSearchResult.getNextToken(); } faceSearchResult = rek.getFaceSearch( new GetFaceSearchRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken) .withSortBy(FaceSearchSortBy.TIMESTAMP) ); VideoMetadata videoMetaData=faceSearchResult.getVideoMetadata(); System.out.println("Format: " + videoMetaData.getFormat()); System.out.println("Codec: " + videoMetaData.getCodec()); System.out.println("Duration: " + videoMetaData.getDurationMillis()); System.out.println("FrameRate: " + videoMetaData.getFrameRate()); System.out.println(); //Show search results List<PersonMatch> matches= faceSearchResult.getPersons(); for (PersonMatch match: matches) { long milliSeconds=match.getTimestamp(); System.out.print("Timestamp: " + Long.toString(milliSeconds)); System.out.println(" Person number: " + match.getPerson().getIndex()); List <FaceMatch> faceMatches = match.getFaceMatches(); if (faceMatches != null) { System.out.println("Matches in collection..."); for (FaceMatch faceMatch: faceMatches){ Face face=faceMatch.getFace(); System.out.println("Face Id: "+ face.getFaceId()); System.out.println("Similarity: " + faceMatch.getSimilarity().toString()); System.out.println(); } } System.out.println(); } System.out.println(); } while (faceSearchResult !=null && faceSearchResult.getNextToken() != null); }

    En la función main, reemplace las líneas:

    StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults();

    por:

    String collection="collection"; StartFaceSearchCollection(bucket, video, collection); if (GetSQSMessageSuccess()==true) GetFaceSearchCollectionResults();
    Java V2

    Este código se ha tomado del GitHub repositorio de ejemplos del SDK de AWS documentación. Consulte el ejemplo completo aquí.

    import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectFaces { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startFaceDetection(rekClient, channel, bucket, video); getFaceResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startFaceDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartFaceDetectionRequest faceDetectionRequest = StartFaceDetectionRequest.builder() .jobTag("Faces") .faceAttributes(FaceAttributes.ALL) .notificationChannel(channel) .video(vidOb) .build(); StartFaceDetectionResponse startLabelDetectionResult = rekClient.startFaceDetection(faceDetectionRequest); startJobId = startLabelDetectionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getFaceResults(RekognitionClient rekClient) { try { String paginationToken = null; GetFaceDetectionResponse faceDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (faceDetectionResponse != null) paginationToken = faceDetectionResponse.nextToken(); GetFaceDetectionRequest recognitionRequest = GetFaceDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { faceDetectionResponse = rekClient.getFaceDetection(recognitionRequest); status = faceDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = faceDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); // Show face information. List<FaceDetection> faces = faceDetectionResponse.faces(); for (FaceDetection face : faces) { String age = face.face().ageRange().toString(); String smile = face.face().smile().toString(); System.out.println("The detected face is estimated to be" + age + " years old."); System.out.println("There is a smile : " + smile); } } while (faceDetectionResponse != null && faceDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
    Python
    #Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) # ============== Face Search =============== def StartFaceSearchCollection(self,collection): response = self.rek.start_face_search(Video={'S3Object':{'Bucket':self.bucket,'Name':self.video}}, CollectionId=collection, NotificationChannel={'RoleArn':self.roleArn, 'SNSTopicArn':self.snsTopicArn}) self.startJobId=response['JobId'] print('Start Job Id: ' + self.startJobId) def GetFaceSearchCollectionResults(self): maxResults = 10 paginationToken = '' finished = False while finished == False: response = self.rek.get_face_search(JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken) print(response['VideoMetadata']['Codec']) print(str(response['VideoMetadata']['DurationMillis'])) print(response['VideoMetadata']['Format']) print(response['VideoMetadata']['FrameRate']) for personMatch in response['Persons']: print('Person Index: ' + str(personMatch['Person']['Index'])) print('Timestamp: ' + str(personMatch['Timestamp'])) if ('FaceMatches' in personMatch): for faceMatch in personMatch['FaceMatches']: print('Face ID: ' + faceMatch['Face']['FaceId']) print('Similarity: ' + str(faceMatch['Similarity'])) print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True print()

    En la función main, reemplace las líneas:

    analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetLabelDetectionResults()

    por:

    collection='tests' analyzer.StartFaceSearchCollection(collection) if analyzer.GetSQSMessageSuccess()==True: analyzer.GetFaceSearchCollectionResults()

    Si ya ha ejecutado un ejemplo de vídeo distinto de Análisis de un vídeo almacenado en un bucket de Amazon S3 con Java o Python (SDK), el código que se va a reemplazar podría ser diferente.

  5. Cambie el valor de collection por el nombre de la colección que ha creado en el paso 1.

  6. Ejecute el código. Se muestra una lista de personas del vídeo cuyos rostros coinciden con los de la colección de entrada. También se muestran los datos de seguimiento de cada persona que coincida.

GetFaceSearch respuesta de operación

A continuación se muestra un ejemplo de respuesta JSON de GetFaceSearch.

La respuesta incluye una matriz de personas (Persons), detectadas en el vídeo cuyos rostro(s) coinciden con un rostro de la colección de entrada. Un elemento de matriz, PersonMatch, existe para cada vez que la persona coincide en el vídeo. Cada PersonMatch incluye una gama de coincidencias de rostros a partir de la colección de entrada, FaceMatch, la información sobre la persona que coincide, PersonDetail, y el momento en que se encontró una coincidencia de la persona en el vídeo.

{ "JobStatus": "SUCCEEDED", "NextToken": "IJdbzkZfvBRqj8GPV82BPiZKkLOGCqDIsNZG/gQsEE5faTVK9JHOz/xxxxxxxxxxxxxxx", "Persons": [ { "FaceMatches": [ { "Face": { "BoundingBox": { "Height": 0.527472972869873, "Left": 0.33530598878860474, "Top": 0.2161169946193695, "Width": 0.35503000020980835 }, "Confidence": 99.90239715576172, "ExternalImageId": "image.PNG", "FaceId": "a2f2e224-bfaa-456c-b360-7c00241e5e2d", "ImageId": "eb57ed44-8d8d-5ec5-90b8-6d190daff4c3" }, "Similarity": 98.40909576416016 } ], "Person": { "BoundingBox": { "Height": 0.8694444298744202, "Left": 0.2473958283662796, "Top": 0.10092592239379883, "Width": 0.49427083134651184 }, "Face": { "BoundingBox": { "Height": 0.23000000417232513, "Left": 0.42500001192092896, "Top": 0.16333332657814026, "Width": 0.12937499582767487 }, "Confidence": 99.97504425048828, "Landmarks": [ { "Type": "eyeLeft", "X": 0.46415066719055176, "Y": 0.2572723925113678 }, { "Type": "eyeRight", "X": 0.5068183541297913, "Y": 0.23705792427062988 }, { "Type": "nose", "X": 0.49765899777412415, "Y": 0.28383663296699524 }, { "Type": "mouthLeft", "X": 0.487221896648407, "Y": 0.3452930748462677 }, { "Type": "mouthRight", "X": 0.5142884850502014, "Y": 0.33167609572410583 } ], "Pose": { "Pitch": 15.966927528381348, "Roll": -15.547388076782227, "Yaw": 11.34195613861084 }, "Quality": { "Brightness": 44.80223083496094, "Sharpness": 99.95819854736328 } }, "Index": 0 }, "Timestamp": 0 }, { "Person": { "BoundingBox": { "Height": 0.2177777737379074, "Left": 0.7593749761581421, "Top": 0.13333334028720856, "Width": 0.12250000238418579 }, "Face": { "BoundingBox": { "Height": 0.2177777737379074, "Left": 0.7593749761581421, "Top": 0.13333334028720856, "Width": 0.12250000238418579 }, "Confidence": 99.63436889648438, "Landmarks": [ { "Type": "eyeLeft", "X": 0.8005779385566711, "Y": 0.20915353298187256 }, { "Type": "eyeRight", "X": 0.8391435146331787, "Y": 0.21049551665782928 }, { "Type": "nose", "X": 0.8191410899162292, "Y": 0.2523227035999298 }, { "Type": "mouthLeft", "X": 0.8093273043632507, "Y": 0.29053622484207153 }, { "Type": "mouthRight", "X": 0.8366993069648743, "Y": 0.29101791977882385 } ], "Pose": { "Pitch": 3.165884017944336, "Roll": 1.4182015657424927, "Yaw": -11.151537895202637 }, "Quality": { "Brightness": 28.910892486572266, "Sharpness": 97.61507415771484 } }, "Index": 1 }, "Timestamp": 0 }, { "Person": { "BoundingBox": { "Height": 0.8388888835906982, "Left": 0, "Top": 0.15833333134651184, "Width": 0.2369791716337204 }, "Face": { "BoundingBox": { "Height": 0.20000000298023224, "Left": 0.029999999329447746, "Top": 0.2199999988079071, "Width": 0.11249999701976776 }, "Confidence": 99.85971069335938, "Landmarks": [ { "Type": "eyeLeft", "X": 0.06842322647571564, "Y": 0.3010137975215912 }, { "Type": "eyeRight", "X": 0.10543643683195114, "Y": 0.29697132110595703 }, { "Type": "nose", "X": 0.09569807350635529, "Y": 0.33701086044311523 }, { "Type": "mouthLeft", "X": 0.0732642263174057, "Y": 0.3757539987564087 }, { "Type": "mouthRight", "X": 0.10589495301246643, "Y": 0.3722417950630188 } ], "Pose": { "Pitch": -0.5589138865470886, "Roll": -5.1093974113464355, "Yaw": 18.69594955444336 }, "Quality": { "Brightness": 43.052337646484375, "Sharpness": 99.68138885498047 } }, "Index": 2 }, "Timestamp": 0 }...... ], "VideoMetadata": { "Codec": "h264", "DurationMillis": 67301, "Format": "QuickTime / MOV", "FrameHeight": 1080, "FrameRate": 29.970029830932617, "FrameWidth": 1920 } }