Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Escribir datos (inserciones y ajustes)
Temas
Escribir lotes de registros
Puede usar los siguientes fragmentos de código para escribir datos en una tabla de Amazon Timestream. Escribir datos en lotes ayuda a optimizar el costo de las escrituras. Para obtener más información, consulta Calcular el número de escrituras.
nota
Estos fragmentos de código se basan en aplicaciones de muestra completas en. GitHub
- Java
-
public void writeRecords() { System.out.println("Writing records"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = new Dimension().withName("region").withValue("us-east-1"); final Dimension az = new Dimension().withName("az").withValue("az1"); final Dimension hostname = new Dimension().withName("hostname").withValue("host1"); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record cpuUtilization = new Record() .withDimensions(dimensions) .withMeasureName("cpu_utilization") .withMeasureValue("13.5") .withMeasureValueType(MeasureValueType.DOUBLE) .withTime(String.valueOf(time)); Record memoryUtilization = new Record() .withDimensions(dimensions) .withMeasureName("memory_utilization") .withMeasureValue("40") .withMeasureValueType(MeasureValueType.DOUBLE) .withTime(String.valueOf(time)); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withRecords(records); try { WriteRecordsResult writeRecordsResult = amazonTimestreamWrite.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status: " + writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.getRejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": " + rejectedRecord.getReason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); } }
- Java v2
-
public void writeRecords() { System.out.println("Writing records"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = Dimension.builder().name("region").value("us-east-1").build(); final Dimension az = Dimension.builder().name("az").value("az1").build(); final Dimension hostname = Dimension.builder().name("hostname").value("host1").build(); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record cpuUtilization = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .measureName("cpu_utilization") .measureValue("13.5") .time(String.valueOf(time)).build(); Record memoryUtilization = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .measureName("memory_utilization") .measureValue("40") .time(String.valueOf(time)).build(); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME).tableName(TABLE_NAME).records(records).build(); try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.rejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": " + rejectedRecord.reason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); } }
- Go
-
now := time.Now() currentTimeInSeconds := now.Unix() writeRecordsInput := ×treamwrite.WriteRecordsInput{ DatabaseName: aws.String(*databaseName), TableName: aws.String(*tableName), Records: []*timestreamwrite.Record{ ×treamwrite.Record{ Dimensions: []*timestreamwrite.Dimension{ ×treamwrite.Dimension{ Name: aws.String("region"), Value: aws.String("us-east-1"), }, ×treamwrite.Dimension{ Name: aws.String("az"), Value: aws.String("az1"), }, ×treamwrite.Dimension{ Name: aws.String("hostname"), Value: aws.String("host1"), }, }, MeasureName: aws.String("cpu_utilization"), MeasureValue: aws.String("13.5"), MeasureValueType: aws.String("DOUBLE"), Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)), TimeUnit: aws.String("SECONDS"), }, ×treamwrite.Record{ Dimensions: []*timestreamwrite.Dimension{ ×treamwrite.Dimension{ Name: aws.String("region"), Value: aws.String("us-east-1"), }, ×treamwrite.Dimension{ Name: aws.String("az"), Value: aws.String("az1"), }, ×treamwrite.Dimension{ Name: aws.String("hostname"), Value: aws.String("host1"), }, }, MeasureName: aws.String("memory_utilization"), MeasureValue: aws.String("40"), MeasureValueType: aws.String("DOUBLE"), Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)), TimeUnit: aws.String("SECONDS"), }, }, } _, err = writeSvc.WriteRecords(writeRecordsInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Write records is successful") }
- Python
-
def write_records(self): print("Writing records") current_time = self._current_milli_time() dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ] cpu_utilization = { 'Dimensions': dimensions, 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5', 'MeasureValueType': 'DOUBLE', 'Time': current_time } memory_utilization = { 'Dimensions': dimensions, 'MeasureName': 'memory_utilization', 'MeasureValue': '40', 'MeasureValueType': 'DOUBLE', 'Time': current_time } records = [cpu_utilization, memory_utilization] try: result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=records, CommonAttributes={}) print("WriteRecords Status: [%s]" % result['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) @staticmethod def _print_rejected_records_exceptions(err): print("RejectedRecords: ", err) for rr in err.response["RejectedRecords"]: print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"]) if "ExistingVersion" in rr: print("Rejected record existing version: ", rr["ExistingVersion"]) @staticmethod def _current_milli_time(): return str(int(round(time.time() * 1000)))
- Node.js
-
En el siguiente fragmento se utiliza el estilo AWS SDK for JavaScript V2. Se basa en la aplicación de ejemplo de Node.js, ejemplo de Amazon Timestream LiveAnalytics
para su aplicación en. GitHub async function writeRecords() { console.log("Writing records"); const currentTime = Date.now().toString(); // Unix time in milliseconds const dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ]; const cpuUtilization = { 'Dimensions': dimensions, 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5', 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString() }; const memoryUtilization = { 'Dimensions': dimensions, 'MeasureName': 'memory_utilization', 'MeasureValue': '40', 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString() }; const records = [cpuUtilization, memoryUtilization]; const params = { DatabaseName: constants.DATABASE_NAME, TableName: constants.TABLE_NAME, Records: records }; const request = writeClient.writeRecords(params); await request.promise().then( (data) => { console.log("Write records successful"); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { const responsePayload = JSON.parse(request.response.httpResponse.body.toString()); console.log("RejectedRecords: ", responsePayload.RejectedRecords); console.log("Other records were written successfully. "); } } ); }
- .NET
-
public async Task WriteRecords() { Console.WriteLine("Writing records"); DateTimeOffset now = DateTimeOffset.UtcNow; string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString(); List<Dimension> dimensions = new List<Dimension>{ new Dimension { Name = "region", Value = "us-east-1" }, new Dimension { Name = "az", Value = "az1" }, new Dimension { Name = "hostname", Value = "host1" } }; var cpuUtilization = new Record { Dimensions = dimensions, MeasureName = "cpu_utilization", MeasureValue = "13.6", MeasureValueType = MeasureValueType.DOUBLE, Time = currentTimeString }; var memoryUtilization = new Record { Dimensions = dimensions, MeasureName = "memory_utilization", MeasureValue = "40", MeasureValueType = MeasureValueType.DOUBLE, Time = currentTimeString }; List<Record> records = new List<Record> { cpuUtilization, memoryUtilization }; try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = records }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"Write records status code: {response.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { Console.WriteLine("RejectedRecordsException:" + e.ToString()); foreach (RejectedRecord rr in e.RejectedRecords) { Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason); } Console.WriteLine("Other records were written successfully. "); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } }
Escribir lotes de registros con atributos comunes
Si los datos de sus series temporales tienen medidas o dimensiones comunes en muchos puntos de datos, también puede utilizar la siguiente versión optimizada writeRecords API para insertar datos en Timestream. LiveAnalytics El uso de atributos comunes con el procesamiento por lotes puede optimizar aún más el costo de las escrituras, como se describe en. Calcular el número de escrituras
nota
Estos fragmentos de código se basan en aplicaciones de muestra completas en. GitHub
- Java
-
public void writeRecordsWithCommonAttributes() { System.out.println("Writing records with extracting common attributes"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = new Dimension().withName("region").withValue("us-east-1"); final Dimension az = new Dimension().withName("az").withValue("az1"); final Dimension hostname = new Dimension().withName("hostname").withValue("host1"); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = new Record() .withDimensions(dimensions) .withMeasureValueType(MeasureValueType.DOUBLE) .withTime(String.valueOf(time)); Record cpuUtilization = new Record() .withMeasureName("cpu_utilization") .withMeasureValue("13.5"); Record memoryUtilization = new Record() .withMeasureName("memory_utilization") .withMeasureValue("40"); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes); writeRecordsRequest.setRecords(records); try { WriteRecordsResult writeRecordsResult = amazonTimestreamWrite.writeRecords(writeRecordsRequest); System.out.println("writeRecordsWithCommonAttributes Status: " + writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.getRejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": " + rejectedRecord.getReason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); } }
- Java v2
-
public void writeRecordsWithCommonAttributes() { System.out.println("Writing records with extracting common attributes"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = Dimension.builder().name("region").value("us-east-1").build(); final Dimension az = Dimension.builder().name("az").value("az1").build(); final Dimension hostname = Dimension.builder().name("hostname").value("host1").build(); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .time(String.valueOf(time)).build(); Record cpuUtilization = Record.builder() .measureName("cpu_utilization") .measureValue("13.5").build(); Record memoryUtilization = Record.builder() .measureName("memory_utilization") .measureValue("40").build(); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(records).build(); try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println("writeRecordsWithCommonAttributes Status: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.rejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": " + rejectedRecord.reason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); } }
- Go
-
now = time.Now() currentTimeInSeconds = now.Unix() writeRecordsCommonAttributesInput := ×treamwrite.WriteRecordsInput{ DatabaseName: aws.String(*databaseName), TableName: aws.String(*tableName), CommonAttributes: ×treamwrite.Record{ Dimensions: []*timestreamwrite.Dimension{ ×treamwrite.Dimension{ Name: aws.String("region"), Value: aws.String("us-east-1"), }, ×treamwrite.Dimension{ Name: aws.String("az"), Value: aws.String("az1"), }, ×treamwrite.Dimension{ Name: aws.String("hostname"), Value: aws.String("host1"), }, }, MeasureValueType: aws.String("DOUBLE"), Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)), TimeUnit: aws.String("SECONDS"), }, Records: []*timestreamwrite.Record{ ×treamwrite.Record{ MeasureName: aws.String("cpu_utilization"), MeasureValue: aws.String("13.5"), }, ×treamwrite.Record{ MeasureName: aws.String("memory_utilization"), MeasureValue: aws.String("40"), }, }, } _, err = writeSvc.WriteRecords(writeRecordsCommonAttributesInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Ingest records is successful") }
- Python
-
def write_records_with_common_attributes(self): print("Writing records extracting common attributes") current_time = self._current_milli_time() dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ] common_attributes = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': current_time } cpu_utilization = { 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5' } memory_utilization = { 'MeasureName': 'memory_utilization', 'MeasureValue': '40' } records = [cpu_utilization, memory_utilization] try: result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=records, CommonAttributes=common_attributes) print("WriteRecords Status: [%s]" % result['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) @staticmethod def _print_rejected_records_exceptions(err): print("RejectedRecords: ", err) for rr in err.response["RejectedRecords"]: print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"]) if "ExistingVersion" in rr: print("Rejected record existing version: ", rr["ExistingVersion"]) @staticmethod def _current_milli_time(): return str(int(round(time.time() * 1000)))
- Node.js
-
En el siguiente fragmento se utiliza el estilo AWS SDK for JavaScript V2. Se basa en la aplicación de ejemplo de Node.js, ejemplo de Amazon Timestream LiveAnalytics
para su aplicación en. GitHub async function writeRecordsWithCommonAttributes() { console.log("Writing records with common attributes"); const currentTime = Date.now().toString(); // Unix time in milliseconds const dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ]; const commonAttributes = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString() }; const cpuUtilization = { 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5' }; const memoryUtilization = { 'MeasureName': 'memory_utilization', 'MeasureValue': '40' }; const records = [cpuUtilization, memoryUtilization]; const params = { DatabaseName: constants.DATABASE_NAME, TableName: constants.TABLE_NAME, Records: records, CommonAttributes: commonAttributes }; const request = writeClient.writeRecords(params); await request.promise().then( (data) => { console.log("Write records successful"); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { const responsePayload = JSON.parse(request.response.httpResponse.body.toString()); console.log("RejectedRecords: ", responsePayload.RejectedRecords); console.log("Other records were written successfully. "); } } ); }
- .NET
-
public async Task WriteRecordsWithCommonAttributes() { Console.WriteLine("Writing records with common attributes"); DateTimeOffset now = DateTimeOffset.UtcNow; string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString(); List<Dimension> dimensions = new List<Dimension>{ new Dimension { Name = "region", Value = "us-east-1" }, new Dimension { Name = "az", Value = "az1" }, new Dimension { Name = "hostname", Value = "host1" } }; var commonAttributes = new Record { Dimensions = dimensions, MeasureValueType = MeasureValueType.DOUBLE, Time = currentTimeString }; var cpuUtilization = new Record { MeasureName = "cpu_utilization", MeasureValue = "13.6" }; var memoryUtilization = new Record { MeasureName = "memory_utilization", MeasureValue = "40" }; List<Record> records = new List<Record>(); records.Add(cpuUtilization); records.Add(memoryUtilization); try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"Write records status code: {response.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { Console.WriteLine("RejectedRecordsException:" + e.ToString()); foreach (RejectedRecord rr in e.RejectedRecords) { Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason); } Console.WriteLine("Other records were written successfully. "); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } }
Alterando los registros
Si bien las escrituras predeterminadas en Amazon Timestream siguen la semántica del primer escritor gana, donde los datos se almacenan solo como datos adjuntos y se rechazan los registros duplicados, hay aplicaciones que requieren la capacidad de escribir datos en Amazon Timestream utilizando la semántica del último escritor gana, donde el registro con la versión más alta se almacena en el sistema. También hay aplicaciones que requieren la capacidad de actualizar los registros existentes. Para abordar estos escenarios, Amazon Timestream ofrece la posibilidad de alterar los datos. Upsert es una operación que inserta un registro en el sistema cuando el registro no existe o lo actualiza, cuando existe.
Puede alterar los registros incluyendo la definición del registro al Version
enviar una solicitud. WriteRecords
Amazon Timestream almacenará el registro con el registro más alto. Version
El siguiente ejemplo de código muestra cómo se pueden alterar los datos:
nota
Estos fragmentos de código se basan en aplicaciones de muestra completas en. GitHub
- Java
-
public void writeRecordsWithUpsert() { System.out.println("Writing records with upsert"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); // To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = new Dimension().withName("region").withValue("us-east-1"); final Dimension az = new Dimension().withName("az").withValue("az1"); final Dimension hostname = new Dimension().withName("hostname").withValue("host1"); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = new Record() .withDimensions(dimensions) .withMeasureValueType(MeasureValueType.DOUBLE) .withTime(String.valueOf(time)) .withVersion(version); Record cpuUtilization = new Record() .withMeasureName("cpu_utilization") .withMeasureValue("13.5"); Record memoryUtilization = new Record() .withMeasureName("memory_utilization") .withMeasureValue("40"); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes); writeRecordsRequest.setRecords(records); // write records for first time try { WriteRecordsResult writeRecordsResult = amazonTimestreamWrite.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status for first time: " + writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // Successfully retry same writeRecordsRequest with same records and versions, because writeRecords API is idempotent. try { WriteRecordsResult writeRecordsResult = amazonTimestreamWrite.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status for retry: " + writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // upsert with lower version, this would fail because a higher version is required to update the measure value. version -= 1; commonAttributes.setVersion(version); cpuUtilization.setMeasureValue("14.5"); memoryUtilization.setMeasureValue("50"); List<Record> upsertedRecords = new ArrayList<>(); upsertedRecords.add(cpuUtilization); upsertedRecords.add(memoryUtilization); WriteRecordsRequest writeRecordsUpsertRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes); writeRecordsUpsertRequest.setRecords(upsertedRecords); try { WriteRecordsResult writeRecordsUpsertResult = amazonTimestreamWrite.writeRecords(writeRecordsUpsertRequest); System.out.println("WriteRecords Status for upsert with lower version: " + writeRecordsUpsertResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { System.out.println("WriteRecords Status for upsert with lower version: "); printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // upsert with higher version as new data in generated version = System.currentTimeMillis(); commonAttributes.setVersion(version); writeRecordsUpsertRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes); writeRecordsUpsertRequest.setRecords(upsertedRecords); try { WriteRecordsResult writeRecordsUpsertResult = amazonTimestreamWrite.writeRecords(writeRecordsUpsertRequest); System.out.println("WriteRecords Status for upsert with higher version: " + writeRecordsUpsertResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } }
- Java v2
-
public void writeRecordsWithUpsert() { System.out.println("Writing records with upsert"); // Specify repeated values for all records List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); // To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = Dimension.builder().name("region").value("us-east-1").build(); final Dimension az = Dimension.builder().name("az").value("az1").build(); final Dimension hostname = Dimension.builder().name("hostname").value("host1").build(); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .time(String.valueOf(time)) .version(version) .build(); Record cpuUtilization = Record.builder() .measureName("cpu_utilization") .measureValue("13.5").build(); Record memoryUtilization = Record.builder() .measureName("memory_utilization") .measureValue("40").build(); records.add(cpuUtilization); records.add(memoryUtilization); WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(records).build(); // write records for first time try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status for first time: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // Successfully retry same writeRecordsRequest with same records and versions, because writeRecords API is idempotent. try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status for retry: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // upsert with lower version, this would fail because a higher version is required to update the measure value. version -= 1; commonAttributes = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .time(String.valueOf(time)) .version(version) .build(); cpuUtilization = Record.builder() .measureName("cpu_utilization") .measureValue("14.5").build(); memoryUtilization = Record.builder() .measureName("memory_utilization") .measureValue("50").build(); List<Record> upsertedRecords = new ArrayList<>(); upsertedRecords.add(cpuUtilization); upsertedRecords.add(memoryUtilization); WriteRecordsRequest writeRecordsUpsertRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(upsertedRecords).build(); try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsUpsertRequest); System.out.println("WriteRecords Status for upsert with lower version: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { System.out.println("WriteRecords Status for upsert with lower version: "); printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } // upsert with higher version as new data in generated version = System.currentTimeMillis(); commonAttributes = Record.builder() .dimensions(dimensions) .measureValueType(MeasureValueType.DOUBLE) .time(String.valueOf(time)) .version(version) .build(); writeRecordsUpsertRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(upsertedRecords).build(); try { WriteRecordsResponse writeRecordsUpsertResponse = timestreamWriteClient.writeRecords(writeRecordsUpsertRequest); System.out.println("WriteRecords Status for upsert with higher version: " + writeRecordsUpsertResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } }
- Go
-
// Below code will ingest and upsert cpu_utilization and memory_utilization metric for a host on // region=us-east-1, az=az1, and hostname=host1 fmt.Println("Ingesting records and set version as currentTimeInMills, hit enter to continue") reader.ReadString('\n') // Get current time in seconds. now = time.Now() currentTimeInSeconds = now.Unix() // To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source version := time.Now().Round(time.Millisecond).UnixNano() / 1e6 // set version as currentTimeInMills writeRecordsCommonAttributesUpsertInput := ×treamwrite.WriteRecordsInput{ DatabaseName: aws.String(*databaseName), TableName: aws.String(*tableName), CommonAttributes: ×treamwrite.Record{ Dimensions: []*timestreamwrite.Dimension{ ×treamwrite.Dimension{ Name: aws.String("region"), Value: aws.String("us-east-1"), }, ×treamwrite.Dimension{ Name: aws.String("az"), Value: aws.String("az1"), }, ×treamwrite.Dimension{ Name: aws.String("hostname"), Value: aws.String("host1"), }, }, MeasureValueType: aws.String("DOUBLE"), Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)), TimeUnit: aws.String("SECONDS"), Version: &version, }, Records: []*timestreamwrite.Record{ ×treamwrite.Record{ MeasureName: aws.String("cpu_utilization"), MeasureValue: aws.String("13.5"), }, ×treamwrite.Record{ MeasureName: aws.String("memory_utilization"), MeasureValue: aws.String("40"), }, }, } // write records for first time _, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Frist-time write records is successful") } fmt.Println("Retry same writeRecordsRequest with same records and versions. Because writeRecords API is idempotent, this will success. hit enter to continue") reader.ReadString('\n') _, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Retry write records for same request is successful") } fmt.Println("Upsert with lower version, this would fail because a higher version is required to update the measure value. hit enter to continue") reader.ReadString('\n') version -= 1 writeRecordsCommonAttributesUpsertInput.CommonAttributes.Version = &version updated_cpu_utilization := ×treamwrite.Record{ MeasureName: aws.String("cpu_utilization"), MeasureValue: aws.String("14.5"), } updated_memory_utilization := ×treamwrite.Record{ MeasureName: aws.String("memory_utilization"), MeasureValue: aws.String("50"), } writeRecordsCommonAttributesUpsertInput.Records = []*timestreamwrite.Record{ updated_cpu_utilization, updated_memory_utilization, } _, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Write records with lower version is successful") } fmt.Println("Upsert with higher version as new data in generated, this would success. hit enter to continue") reader.ReadString('\n') version = time.Now().Round(time.Millisecond).UnixNano() / 1e6 // set version as currentTimeInMills writeRecordsCommonAttributesUpsertInput.CommonAttributes.Version = &version _, err = writeSvc.WriteRecords(writeRecordsCommonAttributesUpsertInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Write records with higher version is successful") }
- Python
-
def write_records_with_upsert(self): print("Writing records with upsert") current_time = self._current_milli_time() # To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source version = int(self._current_milli_time()) dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ] common_attributes = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': current_time, 'Version': version } cpu_utilization = { 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5' } memory_utilization = { 'MeasureName': 'memory_utilization', 'MeasureValue': '40' } records = [cpu_utilization, memory_utilization] # write records for first time try: result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=records, CommonAttributes=common_attributes) print("WriteRecords Status for first time: [%s]" % result['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) # Successfully retry same writeRecordsRequest with same records and versions, because writeRecords API is idempotent. try: result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=records, CommonAttributes=common_attributes) print("WriteRecords Status for retry: [%s]" % result['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) # upsert with lower version, this would fail because a higher version is required to update the measure value. version -= 1 common_attributes["Version"] = version cpu_utilization["MeasureValue"] = '14.5' memory_utilization["MeasureValue"] = '50' upsertedRecords = [cpu_utilization, memory_utilization] try: upsertedResult = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=upsertedRecords, CommonAttributes=common_attributes) print("WriteRecords Status for upsert with lower version: [%s]" % upsertedResult['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) # upsert with higher version as new data is generated version = int(self._current_milli_time()) common_attributes["Version"] = version try: upsertedResult = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=upsertedRecords, CommonAttributes=common_attributes) print("WriteRecords Upsert Status: [%s]" % upsertedResult['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: self._print_rejected_records_exceptions(err) except Exception as err: print("Error:", err) @staticmethod def _current_milli_time(): return str(int(round(time.time() * 1000)))
- Node.js
-
En el siguiente fragmento se utiliza el estilo AWS SDK for JavaScript V2. Se basa en la aplicación de ejemplo de Node.js, ejemplo de Amazon Timestream LiveAnalytics
para su aplicación en. GitHub async function writeRecordsWithUpsert() { console.log("Writing records with upsert"); const currentTime = Date.now().toString(); // Unix time in milliseconds // To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source let version = Date.now(); const dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ]; const commonAttributes = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString(), 'Version': version }; const cpuUtilization = { 'MeasureName': 'cpu_utilization', 'MeasureValue': '13.5' }; const memoryUtilization = { 'MeasureName': 'memory_utilization', 'MeasureValue': '40' }; const records = [cpuUtilization, memoryUtilization]; const params = { DatabaseName: constants.DATABASE_NAME, TableName: constants.TABLE_NAME, Records: records, CommonAttributes: commonAttributes }; const request = writeClient.writeRecords(params); // write records for first time await request.promise().then( (data) => { console.log("Write records successful for first time."); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { printRejectedRecordsException(request); } } ); // Successfully retry same writeRecordsRequest with same records and versions, because writeRecords API is idempotent. await request.promise().then( (data) => { console.log("Write records successful for retry."); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { printRejectedRecordsException(request); } } ); // upsert with lower version, this would fail because a higher version is required to update the measure value. version--; const commonAttributesWithLowerVersion = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString(), 'Version': version }; const updatedCpuUtilization = { 'MeasureName': 'cpu_utilization', 'MeasureValue': '14.5' }; const updatedMemoryUtilization = { 'MeasureName': 'memory_utilization', 'MeasureValue': '50' }; const upsertedRecords = [updatedCpuUtilization, updatedMemoryUtilization]; const upsertedParamsWithLowerVersion = { DatabaseName: constants.DATABASE_NAME, TableName: constants.TABLE_NAME, Records: upsertedRecords, CommonAttributes: commonAttributesWithLowerVersion }; const upsertRequestWithLowerVersion = writeClient.writeRecords(upsertedParamsWithLowerVersion); await upsertRequestWithLowerVersion.promise().then( (data) => { console.log("Write records for upsert with lower version successful"); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { printRejectedRecordsException(upsertRequestWithLowerVersion); } } ); // upsert with higher version as new data in generated version = Date.now(); const commonAttributesWithHigherVersion = { 'Dimensions': dimensions, 'MeasureValueType': 'DOUBLE', 'Time': currentTime.toString(), 'Version': version }; const upsertedParamsWithHigherVerion = { DatabaseName: constants.DATABASE_NAME, TableName: constants.TABLE_NAME, Records: upsertedRecords, CommonAttributes: commonAttributesWithHigherVersion }; const upsertRequestWithHigherVersion = writeClient.writeRecords(upsertedParamsWithHigherVerion); await upsertRequestWithHigherVersion.promise().then( (data) => { console.log("Write records upsert successful with higher version"); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { printRejectedRecordsException(upsertedParamsWithHigherVerion); } } ); }
- .NET
-
public async Task WriteRecordsWithUpsert() { Console.WriteLine("Writing records with upsert"); DateTimeOffset now = DateTimeOffset.UtcNow; string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString(); // To achieve upsert (last writer wins) semantic, one example is to use current time as the version if you are writing directly from the data source long version = now.ToUnixTimeMilliseconds(); List<Dimension> dimensions = new List<Dimension>{ new Dimension { Name = "region", Value = "us-east-1" }, new Dimension { Name = "az", Value = "az1" }, new Dimension { Name = "hostname", Value = "host1" } }; var commonAttributes = new Record { Dimensions = dimensions, MeasureValueType = MeasureValueType.DOUBLE, Time = currentTimeString, Version = version }; var cpuUtilization = new Record { MeasureName = "cpu_utilization", MeasureValue = "13.6" }; var memoryUtilization = new Record { MeasureName = "memory_utilization", MeasureValue = "40" }; List<Record> records = new List<Record>(); records.Add(cpuUtilization); records.Add(memoryUtilization); // write records for first time try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"WriteRecords Status for first time: {response.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { PrintRejectedRecordsException(e); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } // Successfully retry same writeRecordsRequest with same records and versions, because writeRecords API is idempotent. try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"WriteRecords Status for retry: {response.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { PrintRejectedRecordsException(e); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } // upsert with lower version, this would fail because a higher version is required to update the measure value. version--; Type recordType = typeof(Record); recordType.GetProperty("Version").SetValue(commonAttributes, version); recordType.GetProperty("MeasureValue").SetValue(cpuUtilization, "14.6"); recordType.GetProperty("MeasureValue").SetValue(memoryUtilization, "50"); List<Record> upsertedRecords = new List<Record> { cpuUtilization, memoryUtilization }; try { var writeRecordsUpsertRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = upsertedRecords, CommonAttributes = commonAttributes }; WriteRecordsResponse upsertResponse = await writeClient.WriteRecordsAsync(writeRecordsUpsertRequest); Console.WriteLine($"WriteRecords Status for upsert with lower version: {upsertResponse.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { PrintRejectedRecordsException(e); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } // upsert with higher version as new data in generated now = DateTimeOffset.UtcNow; version = now.ToUnixTimeMilliseconds(); recordType.GetProperty("Version").SetValue(commonAttributes, version); try { var writeRecordsUpsertRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = upsertedRecords, CommonAttributes = commonAttributes }; WriteRecordsResponse upsertResponse = await writeClient.WriteRecordsAsync(writeRecordsUpsertRequest); Console.WriteLine($"WriteRecords Status for upsert with higher version: {upsertResponse.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { PrintRejectedRecordsException(e); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } }
Ejemplo de atributo de medidas múltiples
En este ejemplo, se ilustra la escritura de atributos de múltiples mediciones. Los atributos de medición múltiple son útiles cuando un dispositivo o una aplicación que se está rastreando emite varias métricas o eventos al mismo tiempo.
nota
Estos fragmentos de código se basan en ejemplos completos de aplicaciones. GitHub
- Java
-
package com.amazonaws.services.timestream; import static com.amazonaws.services.timestream.Main.DATABASE_NAME; import static com.amazonaws.services.timestream.Main.REGION; import static com.amazonaws.services.timestream.Main.TABLE_NAME; import java.util.ArrayList; import java.util.List; import com.amazonaws.services.timestreamwrite.AmazonTimestreamWrite; import com.amazonaws.services.timestreamwrite.model.Dimension; import com.amazonaws.services.timestreamwrite.model.MeasureValue; import com.amazonaws.services.timestreamwrite.model.MeasureValueType; import com.amazonaws.services.timestreamwrite.model.Record; import com.amazonaws.services.timestreamwrite.model.RejectedRecordsException; import com.amazonaws.services.timestreamwrite.model.WriteRecordsRequest; import com.amazonaws.services.timestreamwrite.model.WriteRecordsResult; public class multimeasureAttributeExample { AmazonTimestreamWrite timestreamWriteClient; public multimeasureAttributeExample(AmazonTimestreamWrite client) { this.timestreamWriteClient = client; } public void writeRecordsMultiMeasureValueSingleRecord() { System.out.println("Writing records with multi value attributes"); List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = new Dimension().withName("region").withValue(REGION); final Dimension az = new Dimension().withName("az").withValue("az1"); final Dimension hostname = new Dimension().withName("hostname").withValue("host1"); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = new Record() .withDimensions(dimensions) .withTime(String.valueOf(time)) .withVersion(version); MeasureValue cpuUtilization = new MeasureValue() .withName("cpu_utilization") .withType(MeasureValueType.DOUBLE) .withValue("13.5"); MeasureValue memoryUtilization = new MeasureValue() .withName("memory_utilization") .withType(MeasureValueType.DOUBLE) .withValue("40"); Record computationalResources = new Record() .withMeasureName("cpu_memory") .withMeasureValues(cpuUtilization, memoryUtilization) .withMeasureValueType(MeasureValueType.MULTI); records.add(computationalResources); WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes) .withRecords(records); // write records for first time try { WriteRecordsResult writeRecordResult = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println( "WriteRecords Status for multi value attributes: " + writeRecordResult .getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } } public void writeRecordsMultiMeasureValueMultipleRecords() { System.out.println( "Writing records with multi value attributes mixture type"); List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = new Dimension().withName("region").withValue(REGION); final Dimension az = new Dimension().withName("az").withValue("az1"); final Dimension hostname = new Dimension().withName("hostname").withValue("host1"); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = new Record() .withDimensions(dimensions) .withTime(String.valueOf(time)) .withVersion(version); MeasureValue cpuUtilization = new MeasureValue() .withName("cpu_utilization") .withType(MeasureValueType.DOUBLE) .withValue("13"); MeasureValue memoryUtilization =new MeasureValue() .withName("memory_utilization") .withType(MeasureValueType.DOUBLE) .withValue("40"); MeasureValue activeCores = new MeasureValue() .withName("active_cores") .withType(MeasureValueType.BIGINT) .withValue("4"); Record computationalResources = new Record() .withMeasureName("computational_utilization") .withMeasureValues(cpuUtilization, memoryUtilization, activeCores) .withMeasureValueType(MeasureValueType.MULTI); records.add(computationalResources); WriteRecordsRequest writeRecordsRequest = new WriteRecordsRequest() .withDatabaseName(DATABASE_NAME) .withTableName(TABLE_NAME) .withCommonAttributes(commonAttributes) .withRecords(records); // write records for first time try { WriteRecordsResult writeRecordResult = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println( "WriteRecords Status for multi value attributes: " + writeRecordResult .getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } } private void printRejectedRecordsException(RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); e.getRejectedRecords().forEach(System.out::println); } }
- Java v2
-
package com.amazonaws.services.timestream; import java.util.ArrayList; import java.util.List; import software.amazon.awssdk.services.timestreamwrite.TimestreamWriteClient; import software.amazon.awssdk.services.timestreamwrite.model.Dimension; import software.amazon.awssdk.services.timestreamwrite.model.MeasureValue; import software.amazon.awssdk.services.timestreamwrite.model.MeasureValueType; import software.amazon.awssdk.services.timestreamwrite.model.Record; import software.amazon.awssdk.services.timestreamwrite.model.RejectedRecordsException; import software.amazon.awssdk.services.timestreamwrite.model.WriteRecordsRequest; import software.amazon.awssdk.services.timestreamwrite.model.WriteRecordsResponse; import static com.amazonaws.services.timestream.Main.DATABASE_NAME; import static com.amazonaws.services.timestream.Main.TABLE_NAME; public class multimeasureAttributeExample { TimestreamWriteClient timestreamWriteClient; public multimeasureAttributeExample(TimestreamWriteClient client) { this.timestreamWriteClient = client; } public void writeRecordsMultiMeasureValueSingleRecord() { System.out.println("Writing records with multi value attributes"); List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = Dimension.builder().name("region").value("us-east-1").build(); final Dimension az = Dimension.builder().name("az").value("az1").build(); final Dimension hostname = Dimension.builder().name("hostname").value("host1").build(); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = Record.builder() .dimensions(dimensions) .time(String.valueOf(time)) .version(version) .build(); MeasureValue cpuUtilization = MeasureValue.builder() .name("cpu_utilization") .type(MeasureValueType.DOUBLE) .value("13.5").build(); MeasureValue memoryUtilization = MeasureValue.builder() .name("memory_utilization") .type(MeasureValueType.DOUBLE) .value("40").build(); Record computationalResources = Record .builder() .measureName("cpu_memory") .measureValues(cpuUtilization, memoryUtilization) .measureValueType(MeasureValueType.MULTI) .build(); records.add(computationalResources); WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(records).build(); // write records for first time try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println( "WriteRecords Status for multi value attributes: " + writeRecordsResponse .sdkHttpResponse() .statusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } } public void writeRecordsMultiMeasureValueMultipleRecords() { System.out.println( "Writing records with multi value attributes mixture type"); List<Record> records = new ArrayList<>(); final long time = System.currentTimeMillis(); long version = System.currentTimeMillis(); List<Dimension> dimensions = new ArrayList<>(); final Dimension region = Dimension.builder().name("region").value("us-east-1").build(); final Dimension az = Dimension.builder().name("az").value("az1").build(); final Dimension hostname = Dimension.builder().name("hostname").value("host1").build(); dimensions.add(region); dimensions.add(az); dimensions.add(hostname); Record commonAttributes = Record.builder() .dimensions(dimensions) .time(String.valueOf(time)) .version(version) .build(); MeasureValue cpuUtilization = MeasureValue.builder() .name("cpu_utilization") .type(MeasureValueType.DOUBLE) .value("13.5").build(); MeasureValue memoryUtilization = MeasureValue.builder() .name("memory_utilization") .type(MeasureValueType.DOUBLE) .value("40").build(); MeasureValue activeCores = MeasureValue.builder() .name("active_cores") .type(MeasureValueType.BIGINT) .value("4").build(); Record computationalResources = Record .builder() .measureName("computational_utilization") .measureValues(cpuUtilization, memoryUtilization, activeCores) .measureValueType(MeasureValueType.MULTI) .build(); records.add(computationalResources); WriteRecordsRequest writeRecordsRequest = WriteRecordsRequest.builder() .databaseName(DATABASE_NAME) .tableName(TABLE_NAME) .commonAttributes(commonAttributes) .records(records).build(); // write records for first time try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println( "WriteRecords Status for multi value attributes: " + writeRecordsResponse .sdkHttpResponse() .statusCode()); } catch (RejectedRecordsException e) { printRejectedRecordsException(e); } catch (Exception e) { System.out.println("Error: " + e); } } private void printRejectedRecordsException(RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); e.rejectedRecords().forEach(System.out::println); } }
- Go
-
now := time.Now() currentTimeInSeconds := now.Unix() writeRecordsInput := ×treamwrite.WriteRecordsInput{ DatabaseName: aws.String(*databaseName), TableName: aws.String(*tableName), Records: []*timestreamwrite.Record{ ×treamwrite.Record{ Dimensions: []*timestreamwrite.Dimension{ ×treamwrite.Dimension{ Name: aws.String("region"), Value: aws.String("us-east-1"), }, ×treamwrite.Dimension{ Name: aws.String("az"), Value: aws.String("az1"), }, ×treamwrite.Dimension{ Name: aws.String("hostname"), Value: aws.String("host1"), }, }, MeasureName: aws.String("metrics"), MeasureValueType: aws.String("MULTI"), Time: aws.String(strconv.FormatInt(currentTimeInSeconds, 10)), TimeUnit: aws.String("SECONDS"), MeasureValues: []*timestreamwrite.MeasureValue{ ×treamwrite.MeasureValue{ Name: aws.String("cpu_utilization"), Value: aws.String("13.5"), Type: aws.String("DOUBLE"), }, ×treamwrite.MeasureValue{ Name: aws.String("memory_utilization"), Value: aws.String("40"), Type: aws.String("DOUBLE"), }, }, }, }, } _, err = writeSvc.WriteRecords(writeRecordsInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Write records is successful") }
- Python
-
import time import boto3 import psutil import os from botocore.config import Config DATABASE_NAME = os.environ['DATABASE_NAME'] TABLE_NAME = os.environ['TABLE_NAME'] COUNTRY = "UK" CITY = "London" HOSTNAME = "MyHostname" # You can make it dynamic using socket.gethostname() INTERVAL = 1 # Seconds def prepare_common_attributes(): common_attributes = { 'Dimensions': [ {'Name': 'country', 'Value': COUNTRY}, {'Name': 'city', 'Value': CITY}, {'Name': 'hostname', 'Value': HOSTNAME} ], 'MeasureName': 'utilization', 'MeasureValueType': 'MULTI' } return common_attributes def prepare_record(current_time): record = { 'Time': str(current_time), 'MeasureValues': [] } return record def prepare_measure(measure_name, measure_value): measure = { 'Name': measure_name, 'Value': str(measure_value), 'Type': 'DOUBLE' } return measure def write_records(records, common_attributes): try: result = write_client.write_records(DatabaseName=DATABASE_NAME, TableName=TABLE_NAME, CommonAttributes=common_attributes, Records=records) status = result['ResponseMetadata']['HTTPStatusCode'] print("Processed %d records. WriteRecords HTTPStatusCode: %s" % (len(records), status)) except Exception as err: print("Error:", err) if __name__ == '__main__': print("writing data to database {} table {}".format( DATABASE_NAME, TABLE_NAME)) session = boto3.Session() write_client = session.client('timestream-write', config=Config( read_timeout=20, max_pool_connections=5000, retries={'max_attempts': 10})) query_client = session.client('timestream-query') # Not used common_attributes = prepare_common_attributes() records = [] while True: current_time = int(time.time() * 1000) cpu_utilization = psutil.cpu_percent() memory_utilization = psutil.virtual_memory().percent swap_utilization = psutil.swap_memory().percent disk_utilization = psutil.disk_usage('/').percent record = prepare_record(current_time) record['MeasureValues'].append(prepare_measure('cpu', cpu_utilization)) record['MeasureValues'].append(prepare_measure('memory', memory_utilization)) record['MeasureValues'].append(prepare_measure('swap', swap_utilization)) record['MeasureValues'].append(prepare_measure('disk', disk_utilization)) records.append(record) print("records {} - cpu {} - memory {} - swap {} - disk {}".format( len(records), cpu_utilization, memory_utilization, swap_utilization, disk_utilization)) if len(records) == 100: write_records(records, common_attributes) records = [] time.sleep(INTERVAL)
- Node.js
-
En el siguiente fragmento se utiliza el estilo AWS SDK for JavaScript V2. Se basa en la aplicación de ejemplo de Node.js, ejemplo de Amazon Timestream LiveAnalytics
para su aplicación en. GitHub async function writeRecords() { console.log("Writing records"); const currentTime = Date.now().toString(); // Unix time in milliseconds const dimensions = [ {'Name': 'region', 'Value': 'us-east-1'}, {'Name': 'az', 'Value': 'az1'}, {'Name': 'hostname', 'Value': 'host1'} ]; const record = { 'Dimensions': dimensions, 'MeasureName': 'metrics', 'MeasureValues': [ { 'Name': 'cpu_utilization', 'Value': '40', 'Type': 'DOUBLE', }, { 'Name': 'memory_utilization', 'Value': '13.5', 'Type': 'DOUBLE', }, ], 'MeasureValueType': 'MULTI', 'Time': currentTime.toString() } const records = [record]; const params = { DatabaseName: 'DatabaseName', TableName: 'TableName', Records: records }; const response = await writeClient.writeRecords(params); console.log(response); }
- .NET
-
using System; using System.IO; using System.Collections.Generic; using Amazon.TimestreamWrite; using Amazon.TimestreamWrite.Model; using System.Threading.Tasks; namespace TimestreamDotNetSample { static class MultiMeasureValueConstants { public const string MultiMeasureValueSampleDb = "multiMeasureValueSampleDb"; public const string MultiMeasureValueSampleTable = "multiMeasureValueSampleTable"; } public class MultiValueAttributesExample { private readonly AmazonTimestreamWriteClient writeClient; public MultiValueAttributesExample(AmazonTimestreamWriteClient writeClient) { this.writeClient = writeClient; } public async Task WriteRecordsMultiMeasureValueSingleRecord() { Console.WriteLine("Writing records with multi value attributes"); DateTimeOffset now = DateTimeOffset.UtcNow; string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString(); List<Dimension> dimensions = new List<Dimension>{ new Dimension { Name = "region", Value = "us-east-1" }, new Dimension { Name = "az", Value = "az1" }, new Dimension { Name = "hostname", Value = "host1" } }; var commonAttributes = new Record { Dimensions = dimensions, Time = currentTimeString }; var cpuUtilization = new MeasureValue { Name = "cpu_utilization", Value = "13.6", Type = "DOUBLE" }; var memoryUtilization = new MeasureValue { Name = "memory_utilization", Value = "40", Type = "DOUBLE" }; var computationalRecord = new Record { MeasureName = "cpu_memory", MeasureValues = new List<MeasureValue> {cpuUtilization, memoryUtilization}, MeasureValueType = "MULTI" }; List<Record> records = new List<Record>(); records.Add(computationalRecord); try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = MultiMeasureValueConstants.MultiMeasureValueSampleDb, TableName = MultiMeasureValueConstants.MultiMeasureValueSampleTable, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"Write records status code: {response.HttpStatusCode.ToString()}"); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } } public async Task WriteRecordsMultiMeasureValueMultipleRecords() { Console.WriteLine("Writing records with multi value attributes mixture type"); DateTimeOffset now = DateTimeOffset.UtcNow; string currentTimeString = (now.ToUnixTimeMilliseconds()).ToString(); List<Dimension> dimensions = new List<Dimension>{ new Dimension { Name = "region", Value = "us-east-1" }, new Dimension { Name = "az", Value = "az1" }, new Dimension { Name = "hostname", Value = "host1" } }; var commonAttributes = new Record { Dimensions = dimensions, Time = currentTimeString }; var cpuUtilization = new MeasureValue { Name = "cpu_utilization", Value = "13.6", Type = "DOUBLE" }; var memoryUtilization = new MeasureValue { Name = "memory_utilization", Value = "40", Type = "DOUBLE" }; var activeCores = new MeasureValue { Name = "active_cores", Value = "4", Type = "BIGINT" }; var computationalRecord = new Record { MeasureName = "computational_utilization", MeasureValues = new List<MeasureValue> {cpuUtilization, memoryUtilization, activeCores}, MeasureValueType = "MULTI" }; var aliveRecord = new Record { MeasureName = "is_healthy", MeasureValue = "true", MeasureValueType = "BOOLEAN" }; List<Record> records = new List<Record>(); records.Add(computationalRecord); records.Add(aliveRecord); try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = MultiMeasureValueConstants.MultiMeasureValueSampleDb, TableName = MultiMeasureValueConstants.MultiMeasureValueSampleTable, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"Write records status code: {response.HttpStatusCode.ToString()}"); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); } } } }
Manejo de errores de escritura
Las escrituras en Amazon Timestream pueden fallar por uno o varios de los siguientes motivos:
Hay registros con marcas de tiempo que se encuentran fuera del período de retención del almacén de memoria.
Hay registros que contienen dimensiones o medidas que superan los límites definidos por Timestream.
-
Amazon Timestream ha detectado registros duplicados. Los registros se marcan como duplicados cuando hay varios registros con las mismas dimensiones, marcas de tiempo y nombres de medidas, pero:
Los valores de las medidas son diferentes.
La versión no está presente en la solicitud o el valor de la versión en el nuevo registro es igual o inferior al valor existente. Si Amazon Timestream rechaza los datos por este motivo,
ExistingVersion
el campo contendráRejectedRecords
la versión actual del registro almacenada en Amazon Timestream. Para forzar una actualización, puede volver a enviar la solicitud con una versión del registro establecida en un valor superior a.ExistingVersion
Para obtener más información sobre los errores y los registros rechazados, consulte Errores y RejectedRecord.
Si su aplicación recibe un mensaje RejectedRecordsException
al intentar escribir registros en Timestream, puede analizar los registros rechazados para obtener más información sobre los errores de escritura, tal y como se muestra a continuación.
nota
Estos fragmentos de código se basan en ejemplos completos de aplicaciones en. GitHub
- Java
-
try { WriteRecordsResult writeRecordsResult = amazonTimestreamWrite.writeRecords(writeRecordsRequest); System.out.println("WriteRecords Status: " + writeRecordsResult.getSdkHttpMetadata().getHttpStatusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.getRejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.getRecordIndex() + ": " + rejectedRecord.getReason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); }
- Java v2
-
try { WriteRecordsResponse writeRecordsResponse = timestreamWriteClient.writeRecords(writeRecordsRequest); System.out.println("writeRecordsWithCommonAttributes Status: " + writeRecordsResponse.sdkHttpResponse().statusCode()); } catch (RejectedRecordsException e) { System.out.println("RejectedRecords: " + e); for (RejectedRecord rejectedRecord : e.rejectedRecords()) { System.out.println("Rejected Index " + rejectedRecord.recordIndex() + ": " + rejectedRecord.reason()); } System.out.println("Other records were written successfully. "); } catch (Exception e) { System.out.println("Error: " + e); }
- Go
-
_, err = writeSvc.WriteRecords(writeRecordsInput) if err != nil { fmt.Println("Error:") fmt.Println(err) } else { fmt.Println("Write records is successful") }
- Python
-
try: result = self.client.write_records(DatabaseName=Constant.DATABASE_NAME, TableName=Constant.TABLE_NAME, Records=records, CommonAttributes=common_attributes) print("WriteRecords Status: [%s]" % result['ResponseMetadata']['HTTPStatusCode']) except self.client.exceptions.RejectedRecordsException as err: print("RejectedRecords: ", err) for rr in err.response["RejectedRecords"]: print("Rejected Index " + str(rr["RecordIndex"]) + ": " + rr["Reason"]) print("Other records were written successfully. ") except Exception as err: print("Error:", err)
- Node.js
-
En el siguiente fragmento se utiliza el estilo AWS SDK for JavaScript V2. Se basa en la aplicación de ejemplo de Node.js, ejemplo de Amazon Timestream LiveAnalytics
para su aplicación en. GitHub await request.promise().then( (data) => { console.log("Write records successful"); }, (err) => { console.log("Error writing records:", err); if (err.code === 'RejectedRecordsException') { const responsePayload = JSON.parse(request.response.httpResponse.body.toString()); console.log("RejectedRecords: ", responsePayload.RejectedRecords); console.log("Other records were written successfully. "); } } );
- .NET
-
try { var writeRecordsRequest = new WriteRecordsRequest { DatabaseName = Constants.DATABASE_NAME, TableName = Constants.TABLE_NAME, Records = records, CommonAttributes = commonAttributes }; WriteRecordsResponse response = await writeClient.WriteRecordsAsync(writeRecordsRequest); Console.WriteLine($"Write records status code: {response.HttpStatusCode.ToString()}"); } catch (RejectedRecordsException e) { Console.WriteLine("RejectedRecordsException:" + e.ToString()); foreach (RejectedRecord rr in e.RejectedRecords) { Console.WriteLine("RecordIndex " + rr.RecordIndex + " : " + rr.Reason); } Console.WriteLine("Other records were written successfully. "); } catch (Exception e) { Console.WriteLine("Write records failure:" + e.ToString()); }