Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Consultas con funciones agregadas
A continuación se muestra un ejemplo de conjunto de datos de un escenario de IoT para ilustrar las consultas con funciones agregadas.
Datos de ejemplo
Timestream le permite almacenar y analizar los datos de los sensores de IoT, como la ubicación, el consumo de combustible, la velocidad y la capacidad de carga de una o más flotas de camiones, para permitir una gestión eficaz de la flota. A continuación se muestra el esquema y algunos de los datos de una tabla iot_trucks que almacena la telemetría, como la ubicación, el consumo de combustible, la velocidad y la capacidad de carga de los camiones.
Tiempo | truck_id | Make | Modelo | Flota | capacidad_combustible | capacidad_carga | measure_name | measure_value::double | measure_value::varchar |
---|---|---|---|---|---|---|---|---|---|
04/12/2019 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Alfa) |
100 |
500 |
lectura de combustible |
65.2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Alfa) |
100 |
500 |
carga |
400,0 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Alfa) |
100 |
500 |
speed |
90.2 |
null |
2019-12-04 19:00:00.000 000000 |
123456781 |
GMC |
Astro |
Alpha (Alfa) |
100 |
500 |
location |
null |
47,6062 N, 122,3321 W |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Alfa) |
150 |
1 000 |
lectura de combustible |
10.1 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Alfa) |
150 |
1 000 |
carga |
950,3 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Alfa) |
150 |
1 000 |
speed |
50.8 |
null |
2019-12-04 19:00:00.000 000000 |
123456782 |
Kenworth |
W900 |
Alpha (Alfa) |
150 |
1 000 |
location |
null |
40.7128 grados N, 74.0060 grados W |
Consultas de ejemplo
Obtenga una lista de todos los atributos y valores de los sensores que se están monitoreando para cada camión de la flota.
SELECT truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name FROM "sampleDB".IoT GROUP BY truck_id, fleet, fuel_capacity, model, load_capacity, make, measure_name
Obtenga la lectura de combustible más reciente de cada camión de la flota en las últimas 24 horas.
WITH latest_recorded_time AS ( SELECT truck_id, max(time) as latest_time FROM "sampleDB".IoT WHERE measure_name = 'fuel-reading' AND time >= ago(24h) GROUP BY truck_id ) SELECT b.truck_id, b.fleet, b.make, b.model, b.time, b.measure_value::double as last_reported_fuel_reading FROM latest_recorded_time a INNER JOIN "sampleDB".IoT b ON a.truck_id = b.truck_id AND b.time = a.latest_time WHERE b.measure_name = 'fuel-reading' AND b.time > ago(24h) ORDER BY b.truck_id
Identifique los camiones que han estado funcionando con poco combustible (menos del 10%) en las últimas 48 horas:
WITH low_fuel_trucks AS ( SELECT time, truck_id, fleet, make, model, (measure_value::double/cast(fuel_capacity as double)*100) AS fuel_pct FROM "sampleDB".IoT WHERE time >= ago(48h) AND (measure_value::double/cast(fuel_capacity as double)*100) < 10 AND measure_name = 'fuel-reading' ), other_trucks AS ( SELECT time, truck_id, (measure_value::double/cast(fuel_capacity as double)*100) as remaining_fuel FROM "sampleDB".IoT WHERE time >= ago(48h) AND truck_id IN (SELECT truck_id FROM low_fuel_trucks) AND (measure_value::double/cast(fuel_capacity as double)*100) >= 10 AND measure_name = 'fuel-reading' ), trucks_that_refuelled AS ( SELECT a.truck_id FROM low_fuel_trucks a JOIN other_trucks b ON a.truck_id = b.truck_id AND b.time >= a.time ) SELECT DISTINCT truck_id, fleet, make, model, fuel_pct FROM low_fuel_trucks WHERE truck_id NOT IN ( SELECT truck_id FROM trucks_that_refuelled )
Calcula la carga media y la velocidad máxima de cada camión durante la última semana:
SELECT bin(time, 1d) as binned_time, fleet, truck_id, make, model, AVG( CASE WHEN measure_name = 'load' THEN measure_value::double ELSE NULL END ) AS avg_load_tons, MAX( CASE WHEN measure_name = 'speed' THEN measure_value::double ELSE NULL END ) AS max_speed_mph FROM "sampleDB".IoT WHERE time >= ago(7d) AND measure_name IN ('load', 'speed') GROUP BY fleet, truck_id, make, model, bin(time, 1d) ORDER BY truck_id
Obtenga la eficiencia de carga de cada camión durante la semana pasada:
WITH average_load_per_truck AS ( SELECT truck_id, avg(measure_value::double) AS avg_load FROM "sampleDB".IoT WHERE measure_name = 'load' AND time >= ago(7d) GROUP BY truck_id, fleet, load_capacity, make, model ), truck_load_efficiency AS ( SELECT a.truck_id, fleet, load_capacity, make, model, avg_load, measure_value::double, time, (measure_value::double*100)/avg_load as load_efficiency -- , approx_percentile(avg_load_pct, DOUBLE '0.9') FROM "sampleDB".IoT a JOIN average_load_per_truck b ON a.truck_id = b.truck_id WHERE a.measure_name = 'load' ) SELECT truck_id, time, load_efficiency FROM truck_load_efficiency ORDER BY truck_id, time