Seleccione sus preferencias de cookies

Usamos cookies esenciales y herramientas similares que son necesarias para proporcionar nuestro sitio y nuestros servicios. Usamos cookies de rendimiento para recopilar estadísticas anónimas para que podamos entender cómo los clientes usan nuestro sitio y hacer mejoras. Las cookies esenciales no se pueden desactivar, pero puede hacer clic en “Personalizar” o “Rechazar” para rechazar las cookies de rendimiento.

Si está de acuerdo, AWS y los terceros aprobados también utilizarán cookies para proporcionar características útiles del sitio, recordar sus preferencias y mostrar contenido relevante, incluida publicidad relevante. Para aceptar o rechazar todas las cookies no esenciales, haga clic en “Aceptar” o “Rechazar”. Para elegir opciones más detalladas, haga clic en “Personalizar”.

MLPER-03: Define relevant evaluation metrics - Machine Learning Lens
Esta página no se ha traducido a su idioma. Solicitar traducción

MLPER-03: Define relevant evaluation metrics

To validate and monitor model performance, establish numerical metrics that directly relate to the KPIs. These KPIs are established in the business goal identification phase. Evaluate whether the performance metrics accurately reflect the business’ tolerance for the error. For instance, false positives might lead to excessive maintenance costs in predictive maintenance use cases. Numerical metrics, such as precision and recall, would help differentiate the business requirements and be closer aligned to business value. Consider developing custom metrics that tune the model directly for the business objectives. Examples of standard metrics for ML models include:

  • Classification

    • Confusion matrix (precision, recall, accuracy, F1 score)

    • Receiver operating characteristic-area under curve (AUC)

    • Logarithmic loss (log-loss)

  • Regression

    • Root mean square error (RMSE)

    • Mean absolute percentage error (MAPE)

Implementation plan

  • Optimize business-related metrics - Identify performance metrics relevant to use-case and model type. Implement the metric as a loss function or use the loss function included in Amazon SageMaker AI. Use Amazon SageMaker AI Experiments to evaluate the metrics with consideration to the business use case to maximize business value. Track model and concept drift in real time with Amazon SageMaker AI Model Monitor to estimate errors.

    • Calculate the maximum probability of error that will be required for the ML model to produce results considering the tolerance set by the business.

    • Select and train ML models on the available data to make prediction within the probability bounds. Organize tests on different models with Amazon SageMaker AI Experiments.

Documents

Blogs

Videos

Examples

PrivacidadTérminos del sitioPreferencias de cookies
© 2025, Amazon Web Services, Inc o sus afiliados. Todos los derechos reservados.