Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Exemples de code pour la personnalisation des modèles
Les exemples de code suivants montrent comment préparer un ensemble de données de base, configurer des autorisations, créer un modèle personnalisé, afficher les fichiers de sortie, acheter du débit pour le modèle et exécuter une inférence sur le modèle. Vous pouvez modifier ces extraits de code en fonction de votre cas d'utilisation spécifique.
-
Préparez le jeu de données d'entraînement.
-
Créez un fichier d'ensemble de données d'entraînement contenant la ligne suivante et nommez-le
train.jsonl
.{"prompt": "what is AWS", "completion": "it's Amazon Web Services"}
-
Créez un compartiment S3 pour vos données d'entraînement et un autre pour vos données de sortie (les noms doivent être uniques).
-
train.jsonl
Téléchargez-le dans le compartiment de données d'entraînement.
-
-
Créez une politique pour accéder à votre formation et associez-la à un rôle IAM bénéficiant d'une relation de confiance avec Amazon Bedrock. Choisissez l'onglet correspondant à votre méthode préférée, puis suivez les étapes suivantes :
- Console
-
-
Créez la politique S3.
-
Accédez à la console IAM à l'adresse https://console.aws.amazon.com/iam
et choisissez Policies dans le volet de navigation de gauche. -
Sélectionnez Créer une politique, puis choisissez JSON pour ouvrir l'éditeur de stratégie.
-
Collez la politique suivante, en
${output-bucket}
remplaçant${training-bucket}
et par les noms de vos compartiments, puis sélectionnez Next.{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::
${training-bucket}
", "arn:aws:s3:::${training-bucket}
/*" ] }, { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:PutObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::${output-bucket}
", "arn:aws:s3:::${output-bucket}
/*" ] } ] } -
Nommez la politique
MyFineTuningDataAccess
et sélectionnez Créer une politique.
-
-
Créez un rôle IAM et associez la politique.
-
Dans le volet de navigation de gauche, choisissez Rôles, puis sélectionnez Créer un rôle.
-
Sélectionnez Politique de confiance personnalisée, collez la politique suivante, puis sélectionnez Suivant.
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "bedrock.amazonaws.com" }, "Action": "sts:AssumeRole" } ] }
-
Recherchez la
MyFineTuningDataAccess
politique que vous avez créée, cochez la case et choisissez Next. -
Nommez le rôle
MyCustomizationRole
et sélectionnezCreate role
.
-
-
- CLI
-
-
Créez un fichier appelé
BedrockTrust.json
et collez-y la politique suivante.{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "bedrock.amazonaws.com" }, "Action": "sts:AssumeRole" } ] }
-
Créez un autre fichier appelé
MyFineTuningDataAccess.json
et collez-y la politique suivante, en remplaçant${training-bucket}
et par${output-bucket}
les noms de vos compartiments.{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::
${training-bucket}
", "arn:aws:s3:::${training-bucket}
/*" ] }, { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:PutObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::${output-bucket}
", "arn:aws:s3:::${output-bucket}
/*" ] } ] } -
Dans un terminal, accédez au dossier contenant les politiques que vous avez créées.
-
Faites une CreateRoledemande pour créer un rôle IAM appelé
MyCustomizationRole
et joignez la politique deBedrockTrust.json
confiance que vous avez créée.aws iam create-role \ --role-name MyCustomizationRole \ --assume-role-policy-document file://BedrockTrust.json
-
Faites une CreatePolicydemande pour créer la politique d'accès aux données S3 avec le
MyFineTuningDataAccess.json
fichier que vous avez créé. La réponse renvoie unArn
pour la politique.aws iam create-policy \ --policy-name MyFineTuningDataAccess \ --policy-document file://myFineTuningDataAccess.json
-
Faites une AttachRolePolicydemande pour associer la politique d'accès aux données S3 à votre rôle, en
policy-arn
remplaçant le par l'ARN dans la réponse de l'étape précédente :aws iam attach-role-policy \ --role-name MyCustomizationRole \ --policy-arn
${policy-arn}
-
- Python
-
-
Exécutez le code suivant pour CreateRoledemander la création d'un rôle IAM appelé
MyCustomizationRole
et pour faire une CreatePolicydemande pour créer une politique d'accès aux données S3 appeléeMyFineTuningDataAccess
. Pour la politique d'accès aux données S3, remplacez${training-bucket}
et${output-bucket}
par les noms de vos compartiments S3.import boto3 import json iam = boto3.client("iam") iam.create_role( RoleName="MyCustomizationRole", AssumeRolePolicyDocument=json.dumps({ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "bedrock.amazonaws.com" }, "Action": "sts:AssumeRole" } ] }) ) iam.create_policy( PolicyName="MyFineTuningDataAccess", PolicyDocument=json.dumps({ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::
${training-bucket}
", "arn:aws:s3:::${training-bucket}
/*" ] }, { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:PutObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::${output-bucket}
", "arn:aws:s3:::${output-bucket}
/*" ] } ] }) ) -
An
Arn
est renvoyé dans la réponse. Exécutez l'extrait de code suivant pour effectuer une AttachRolePolicydemande, en le${policy-arn}
remplaçant par le code renvoyé.Arn
iam.attach_role_policy( RoleName="MyCustomizationRole", PolicyArn="
${policy-arn}
" )
-
-
Sélectionnez une langue pour voir des exemples de code permettant d'appeler les opérations de l'API de personnalisation du modèle.
- CLI
-
Créez d'abord un fichier texte nommé
FineTuningData.json
. Copiez le code JSON ci-dessous dans le fichier texte, en${output-bucket}
remplaçant${training-bucket}
et par les noms de vos compartiments S3.{ "trainingDataConfig": { "s3Uri": "s3://
${training-bucket}
/train.jsonl" }, "outputDataConfig": { "s3Uri": "s3://${output-bucket}
" } }Pour soumettre une tâche de personnalisation du modèle, accédez au dossier contenu
FineTuningData.json
dans un terminal et exécutez la commande suivante dans la ligne de commande, en la${your-customization-role-arn}
remplaçant par le rôle de personnalisation du modèle que vous avez configuré.aws bedrock create-model-customization-job \ --customization-type FINE_TUNING \ --base-model-identifier arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-text-express-v1 \ --role-arn
${your-customization-role-arn}
\ --job-name MyFineTuningJob \ --custom-model-name MyCustomModel \ --hyper-parameters epochCount=1,batchSize=1,learningRate=.0001,learningRateWarmupSteps=0 \ --cli-input-json file://FineTuningData.jsonLa réponse renvoie un
jobArn
. Laissez le temps de terminer le travail. Vous pouvez vérifier son état à l'aide de la commande suivante.aws bedrock get-model-customization-job \ --job-identifier "
jobArn
"Quand
status
c'est le casCOMPLETE
, vous pouvez le voirtrainingMetrics
dans la réponse. Vous pouvez télécharger les artefacts dans le dossier actuel en exécutant la commande suivante, en lesaet.et-bucket
remplaçant par le nom de votre compartiment de sortie etjobId
par l'ID de la tâche de personnalisation (la séquence suivant la dernière barre oblique dujobArn
).aws s3 cp s3://
${output-bucket}
/model-customization-job-jobId
. --recursiveAchetez un débit provisionné sans engagement pour votre modèle personnalisé à l'aide de la commande suivante.
Note
Cet achat vous sera facturé toutes les heures. Utilisez la console pour consulter les estimations de prix des différentes options.
aws bedrock create-provisioned-model-throughput \ --model-id MyCustomModel \ --provisioned-model-name MyProvisionedCustomModel \ --model-units 1
La réponse renvoie un
provisionedModelArn
. Laissez le débit provisionné être créé pendant un certain temps. Pour vérifier son état, indiquez le nom ou l'ARN du modèle provisionné comme indiquéprovisioned-model-id
dans la commande suivante.aws bedrock get-provisioned-model-throughput \ --provisioned-model-id
${provisioned-model-arn}
Lorsque
status
c'est le casInService
, vous pouvez exécuter l'inférence avec votre modèle personnalisé à l'aide de la commande suivante. Vous devez fournir l'ARN du modèle provisionné sous lamodel-id
forme. La sortie est écrite dans un fichier nomméoutput.txt
dans votre dossier actuel.aws bedrock-runtime invoke-model \ --model-id
${provisioned-model-arn}
\ --body '{"inputText": "What is AWS?", "textGenerationConfig": {"temperature": 0.5}}' \ --cli-binary-format raw-in-base64-out \ output.txt - Python
-
Exécutez l'extrait de code suivant pour soumettre une tâche de réglage précis.
${your-customization-role-arn}
Remplacez-le par l'ARN du compartimentMyCustomizationRole
que vous avez configuré${training-bucket}
et remplacé, ainsi que${output-bucket}
par les noms de vos compartiments S3.import boto3 bedrock = boto3.client(service_name='bedrock') # Set parameters customizationType = "FINE_TUNING" baseModelIdentifier = "arn:aws:bedrock:us-east-1::foundation-model/amazon.titan-text-express-v1" roleArn = "
${your-customization-role-arn}
" jobName = "MyFineTuningJob" customModelName = "MyCustomModel" hyperParameters = { "epochCount": "1", "batchSize": "1", "learningRate": ".0001", "learningRateWarmupSteps": "0" } trainingDataConfig = {"s3Uri": "s3://${training-bucket}
/myInputData/train.jsonl"} outputDataConfig = {"s3Uri": "s3://${output-bucket}
/myOutputData"} # Create job response_ft = bedrock.create_model_customization_job( jobName=jobName, customModelName=customModelName, roleArn=roleArn, baseModelIdentifier=baseModelIdentifier, hyperParameters=hyperParameters, trainingDataConfig=trainingDataConfig, outputDataConfig=outputDataConfig ) jobArn = response_ft.get('jobArn')La réponse renvoie un
jobArn
. Laissez le temps de terminer le travail. Vous pouvez vérifier son état à l'aide de la commande suivante.bedrock.get_model_customization_job(jobIdentifier=jobArn).get('status')
Quand
status
c'est le casCOMPLETE
, vous pouvez le voirtrainingMetrics
dans la GetModelCustomizationJobréponse. Vous pouvez également suivre les étapes de la section Téléchargement d'objets pour télécharger les métriques.Achetez un débit provisionné sans engagement pour votre modèle personnalisé à l'aide de la commande suivante.
response_pt = bedrock.create_provisioned_model_throughput( modelId="MyCustomModel", provisionedModelName="MyProvisionedCustomModel", modelUnits="1" ) provisionedModelArn = response_pt.get('provisionedModelArn')
La réponse renvoie un
provisionedModelArn
. Laissez le débit provisionné être créé pendant un certain temps. Pour vérifier son état, indiquez le nom ou l'ARN du modèle provisionné comme indiquéprovisionedModelId
dans la commande suivante.bedrock.get_provisioned_model_throughput(provisionedModelId=provisionedModelArn)
Lorsque
status
c'est le casInService
, vous pouvez exécuter l'inférence avec votre modèle personnalisé à l'aide de la commande suivante. Vous devez fournir l'ARN du modèle provisionné sous lamodelId
forme.import json import logging import boto3 from botocore.exceptions import ClientError class ImageError(Exception): "Custom exception for errors returned by the model" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using your provisioned custom model. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (json): The response from the model. """ logger.info( "Generating text with your provisioned custom model %s", model_id) brt = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = brt.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get("body").read()) finish_reason = response_body.get("error") if finish_reason is not None: raise ImageError(f"Text generation error. Error is {finish_reason}") logger.info( "Successfully generated text with provisioned custom model %s", model_id) return response_body def main(): """ Entrypoint for example. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = provisionedModelArn body = json.dumps({ "inputText": "what is AWS?" }) response_body = generate_text(model_id, body) print(f"Input token count: {response_body['inputTextTokenCount']}") for result in response_body['results']: print(f"Token count: {result['tokenCount']}") print(f"Output text: {result['outputText']}") print(f"Completion reason: {result['completionReason']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except ImageError as err: logger.error(err.message) print(err.message) else: print( f"Finished generating text with your provisioned custom model {model_id}.") if __name__ == "__main__": main()