Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Exemples d'Amazon RDS Performance Insights utilisant AWS CLI

Mode de mise au point
Exemples d'Amazon RDS Performance Insights utilisant AWS CLI - AWS Command Line Interface

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les exemples de code suivants vous montrent comment effectuer des actions et implémenter des scénarios courants à l' AWS Command Line Interface aide d'Amazon RDS Performance Insights.

Les actions sont des extraits de code de programmes plus larges et doivent être exécutées dans leur contexte. Alors que les actions vous indiquent comment appeler des fonctions de service individuelles, vous pouvez les voir en contexte dans leurs scénarios associés.

Chaque exemple inclut un lien vers le code source complet, où vous trouverez des instructions sur la façon de configurer et d'exécuter le code en contexte.

Rubriques

Actions

L'exemple de code suivant montre comment utiliserdescribe-dimension-keys.

AWS CLI

Pour décrire les clés de dimension

Cet exemple demande les noms de tous les événements d'attente. Les données sont résumées par nom d'événement et par valeurs agrégées de ces événements sur la période spécifiée.

Commande :

aws pi describe-dimension-keys --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --metric db.load.avg --group-by '{"Group":"db.wait_event"}'

Sortie :

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Keys": [ { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex"}, "Total": 0.05906906851195666 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_redo_log_flush"}, "Total": 0.015824722186149193 }, { "Dimensions": {"db.wait_event.name": "CPU"}, "Total": 0.008014396230265477 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_respond_to_client"}, "Total": 0.0036361612526204477 }, { "Dimensions": {"db.wait_event.name": "wait/io/table/sql/handler"}, "Total": 0.0019108398419382965 }, { "Dimensions": {"db.wait_event.name": "wait/synch/cond/mysys/my_thread_var::suspend"}, "Total": 8.533847837782684E-4 }, { "Dimensions": {"db.wait_event.name": "wait/io/file/csv/data"}, "Total": 6.864181956477376E-4 }, { "Dimensions": {"db.wait_event.name": "Unknown"}, "Total": 3.895887056379051E-4 }, { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists"}, "Total": 3.710368625122906E-5 }, { "Dimensions": {"db.wait_event.name": "wait/lock/table/sql/handler"}, "Total": 0 } ] }
  • Pour plus de détails sur l'API, reportez-vous DescribeDimensionKeysà la section Référence des AWS CLI commandes.

L'exemple de code suivant montre comment utiliserdescribe-dimension-keys.

AWS CLI

Pour décrire les clés de dimension

Cet exemple demande les noms de tous les événements d'attente. Les données sont résumées par nom d'événement et par valeurs agrégées de ces événements sur la période spécifiée.

Commande :

aws pi describe-dimension-keys --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --metric db.load.avg --group-by '{"Group":"db.wait_event"}'

Sortie :

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Keys": [ { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex"}, "Total": 0.05906906851195666 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_redo_log_flush"}, "Total": 0.015824722186149193 }, { "Dimensions": {"db.wait_event.name": "CPU"}, "Total": 0.008014396230265477 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_respond_to_client"}, "Total": 0.0036361612526204477 }, { "Dimensions": {"db.wait_event.name": "wait/io/table/sql/handler"}, "Total": 0.0019108398419382965 }, { "Dimensions": {"db.wait_event.name": "wait/synch/cond/mysys/my_thread_var::suspend"}, "Total": 8.533847837782684E-4 }, { "Dimensions": {"db.wait_event.name": "wait/io/file/csv/data"}, "Total": 6.864181956477376E-4 }, { "Dimensions": {"db.wait_event.name": "Unknown"}, "Total": 3.895887056379051E-4 }, { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists"}, "Total": 3.710368625122906E-5 }, { "Dimensions": {"db.wait_event.name": "wait/lock/table/sql/handler"}, "Total": 0 } ] }
  • Pour plus de détails sur l'API, reportez-vous DescribeDimensionKeysà la section Référence des AWS CLI commandes.

L'exemple de code suivant montre comment utiliserget-resource-metrics.

AWS CLI

Pour obtenir des statistiques sur les ressources

Cet exemple demande des points de données pour le groupe de dimensions db.wait_event et pour la dimension db.wait_event.name au sein de ce groupe. Dans la réponse, les points de données pertinents sont regroupés selon la dimension demandée (db.wait_event.name).

Commande :

aws pi get-resource-metrics --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --period-in-seconds 300 --metric db.load.avg --metric-queries file://metric-queries.json

Les arguments pour --metric-queries sont stockés dans un fichier JSON,metric-queries.json. Voici le contenu de ce fichier :

[ { "Metric": "db.load.avg", "GroupBy": { "Group":"db.wait_event" } } ]

Sortie :

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Identifier": "db-LKCGOBK26374TPTDFXOIWVCPPM", "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 1.3533333333333333 }, { "Timestamp": 1527027000.0, "Value": 0.88 }, <...remaining output omitted...> ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 0.8566666666666667 }, { "Timestamp": 1527027000.0, "Value": 0.8633333333333333 }, <...remaining output omitted...> ], }, <...remaining output omitted...> ] }
  • Pour plus de détails sur l'API, reportez-vous GetResourceMetricsà la section Référence des AWS CLI commandes.

L'exemple de code suivant montre comment utiliserget-resource-metrics.

AWS CLI

Pour obtenir des statistiques sur les ressources

Cet exemple demande des points de données pour le groupe de dimensions db.wait_event et pour la dimension db.wait_event.name au sein de ce groupe. Dans la réponse, les points de données pertinents sont regroupés selon la dimension demandée (db.wait_event.name).

Commande :

aws pi get-resource-metrics --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --period-in-seconds 300 --metric db.load.avg --metric-queries file://metric-queries.json

Les arguments pour --metric-queries sont stockés dans un fichier JSON,metric-queries.json. Voici le contenu de ce fichier :

[ { "Metric": "db.load.avg", "GroupBy": { "Group":"db.wait_event" } } ]

Sortie :

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Identifier": "db-LKCGOBK26374TPTDFXOIWVCPPM", "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 1.3533333333333333 }, { "Timestamp": 1527027000.0, "Value": 0.88 }, <...remaining output omitted...> ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 0.8566666666666667 }, { "Timestamp": 1527027000.0, "Value": 0.8633333333333333 }, <...remaining output omitted...> ], }, <...remaining output omitted...> ] }
  • Pour plus de détails sur l'API, reportez-vous GetResourceMetricsà la section Référence des AWS CLI commandes.

Sur cette page

Rubrique suivante :

Amazon Redshift

Rubrique précédente :

Services de données Amazon RDS
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.