Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

Contoh Performance Insights Amazon RDS menggunakan AWS CLI

Mode fokus
Contoh Performance Insights Amazon RDS menggunakan AWS CLI - AWS Command Line Interface

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Contoh kode berikut menunjukkan cara melakukan tindakan dan menerapkan skenario umum AWS Command Line Interface dengan menggunakan Performance Insights Amazon RDS.

Tindakan adalah kutipan kode dari program yang lebih besar dan harus dijalankan dalam konteks. Sementara tindakan menunjukkan cara memanggil fungsi layanan individual, Anda dapat melihat tindakan dalam konteks dalam skenario terkait.

Setiap contoh menyertakan tautan ke kode sumber lengkap, di mana Anda dapat menemukan instruksi tentang cara mengatur dan menjalankan kode dalam konteks.

Tindakan

Contoh kode berikut menunjukkan cara menggunakandescribe-dimension-keys.

AWS CLI

Untuk menggambarkan kunci dimensi

Contoh ini meminta nama semua acara tunggu. Data dirangkum berdasarkan nama acara, dan nilai agregat dari peristiwa tersebut selama periode waktu yang ditentukan.

Perintah:

aws pi describe-dimension-keys --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --metric db.load.avg --group-by '{"Group":"db.wait_event"}'

Output:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Keys": [ { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex"}, "Total": 0.05906906851195666 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_redo_log_flush"}, "Total": 0.015824722186149193 }, { "Dimensions": {"db.wait_event.name": "CPU"}, "Total": 0.008014396230265477 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_respond_to_client"}, "Total": 0.0036361612526204477 }, { "Dimensions": {"db.wait_event.name": "wait/io/table/sql/handler"}, "Total": 0.0019108398419382965 }, { "Dimensions": {"db.wait_event.name": "wait/synch/cond/mysys/my_thread_var::suspend"}, "Total": 8.533847837782684E-4 }, { "Dimensions": {"db.wait_event.name": "wait/io/file/csv/data"}, "Total": 6.864181956477376E-4 }, { "Dimensions": {"db.wait_event.name": "Unknown"}, "Total": 3.895887056379051E-4 }, { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists"}, "Total": 3.710368625122906E-5 }, { "Dimensions": {"db.wait_event.name": "wait/lock/table/sql/handler"}, "Total": 0 } ] }

Contoh kode berikut menunjukkan cara menggunakandescribe-dimension-keys.

AWS CLI

Untuk menggambarkan kunci dimensi

Contoh ini meminta nama semua acara tunggu. Data dirangkum berdasarkan nama acara, dan nilai agregat dari peristiwa tersebut selama periode waktu yang ditentukan.

Perintah:

aws pi describe-dimension-keys --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --metric db.load.avg --group-by '{"Group":"db.wait_event"}'

Output:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Keys": [ { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex"}, "Total": 0.05906906851195666 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_redo_log_flush"}, "Total": 0.015824722186149193 }, { "Dimensions": {"db.wait_event.name": "CPU"}, "Total": 0.008014396230265477 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_respond_to_client"}, "Total": 0.0036361612526204477 }, { "Dimensions": {"db.wait_event.name": "wait/io/table/sql/handler"}, "Total": 0.0019108398419382965 }, { "Dimensions": {"db.wait_event.name": "wait/synch/cond/mysys/my_thread_var::suspend"}, "Total": 8.533847837782684E-4 }, { "Dimensions": {"db.wait_event.name": "wait/io/file/csv/data"}, "Total": 6.864181956477376E-4 }, { "Dimensions": {"db.wait_event.name": "Unknown"}, "Total": 3.895887056379051E-4 }, { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists"}, "Total": 3.710368625122906E-5 }, { "Dimensions": {"db.wait_event.name": "wait/lock/table/sql/handler"}, "Total": 0 } ] }

Contoh kode berikut menunjukkan cara menggunakanget-resource-metrics.

AWS CLI

Untuk mendapatkan metrik sumber daya

Contoh ini meminta titik data untuk grup dimensi db.wait_event, dan untuk dimensi db.wait_event.name dalam grup itu. Sebagai tanggapan, titik data yang relevan dikelompokkan berdasarkan dimensi yang diminta (db.wait_event.name).

Perintah:

aws pi get-resource-metrics --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --period-in-seconds 300 --metric db.load.avg --metric-queries file://metric-queries.json

Argumen untuk --metric-queries disimpan dalam file JSON,metric-queries.json. Berikut adalah isi dari file tersebut:

[ { "Metric": "db.load.avg", "GroupBy": { "Group":"db.wait_event" } } ]

Output:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Identifier": "db-LKCGOBK26374TPTDFXOIWVCPPM", "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 1.3533333333333333 }, { "Timestamp": 1527027000.0, "Value": 0.88 }, <...remaining output omitted...> ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 0.8566666666666667 }, { "Timestamp": 1527027000.0, "Value": 0.8633333333333333 }, <...remaining output omitted...> ], }, <...remaining output omitted...> ] }

Contoh kode berikut menunjukkan cara menggunakanget-resource-metrics.

AWS CLI

Untuk mendapatkan metrik sumber daya

Contoh ini meminta titik data untuk grup dimensi db.wait_event, dan untuk dimensi db.wait_event.name dalam grup itu. Sebagai tanggapan, titik data yang relevan dikelompokkan berdasarkan dimensi yang diminta (db.wait_event.name).

Perintah:

aws pi get-resource-metrics --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --period-in-seconds 300 --metric db.load.avg --metric-queries file://metric-queries.json

Argumen untuk --metric-queries disimpan dalam file JSON,metric-queries.json. Berikut adalah isi dari file tersebut:

[ { "Metric": "db.load.avg", "GroupBy": { "Group":"db.wait_event" } } ]

Output:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Identifier": "db-LKCGOBK26374TPTDFXOIWVCPPM", "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 1.3533333333333333 }, { "Timestamp": 1527027000.0, "Value": 0.88 }, <...remaining output omitted...> ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 0.8566666666666667 }, { "Timestamp": 1527027000.0, "Value": 0.8633333333333333 }, <...remaining output omitted...> ], }, <...remaining output omitted...> ] }

Di halaman ini

PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.