Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Esempi di codice per l'inferenza in batch
Gli esempi di codice in questo capitolo mostrano come creare un processo di inferenza in batch, visualizzare le relative informazioni e interromperlo. Seleziona una lingua per visualizzarne un esempio di codice:
- Python
-
Crea un JSONL file denominato
abc.jsonl
che contenga almeno il numero minimo di record (vediQuote per Amazon Bedrock). È possibile utilizzare i seguenti contenuti come prima riga e input:{ "recordId": "CALL0000001", "modelInput": { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1024, "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Summarize the following call transcript: ..." } ] } ] } }
Crea un bucket S3 chiamato
amzn-s3-demo-bucket-input
e carica il file su di esso. Quindi crea un bucket S3 chiamatoamzn-s3-demo-bucket-output
su cui scrivere i file di output. Esegui il seguente frammento di codice per inviare un lavoro e ottenere iljobArn
dalla risposta:import boto3 bedrock = boto3.client(service_name="bedrock") inputDataConfig=({ "s3InputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-input/abc.jsonl" } }) outputDataConfig=({ "s3OutputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-output/" } }) response=bedrock.create_model_invocation_job( roleArn="arn:aws:iam::123456789012:role/MyBatchInferenceRole", modelId="anthropic.claude-3-haiku-20240307-v1:0", jobName="my-batch-job", inputDataConfig=inputDataConfig, outputDataConfig=outputDataConfig ) jobArn = response.get('jobArn')
Restituisci lo
status
del processo.bedrock.get_model_invocation_job(jobIdentifier=jobArn)['status']
Elenca i lavori di inferenza in batch che
Failed
.bedrock.list_model_invocation_jobs( maxResults=10, statusEquals="Failed", sortOrder="Descending" )
Arresta il processo che hai iniziato.
bedrock.stop_model_invocation_job(jobIdentifier=jobArn)
- Java
-
package com.amazon.aws.sample.bedrock.inference; import com.amazonaws.services.bedrock.AmazonBedrockAsync; import com.amazonaws.services.bedrock.AmazonBedrockAsyncClientBuilder; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobResult; import com.amazonaws.services.bedrock.model.GetModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.GetModelInvocationJobResult; import com.amazonaws.services.bedrock.model.InvocationJobInputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobOutputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3InputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3OutputDataConfig; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsRequest; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsResult; import com.amazonaws.services.bedrock.model.StopModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.StopModelInvocationJobResult; public class BedrockAsyncInference { private final AmazonBedrockAsync amazonBedrockAsyncClient = AmazonBedrockAsyncClientBuilder.defaultClient(); public void createModelInvokeJobSampleCode() { final InvocationJobS3InputDataConfig invocationJobS3InputDataConfig = new InvocationJobS3InputDataConfig() .withS3Uri("s3://batch-input/abc.jsonl") .withS3InputFormat("JSONL"); final InvocationJobInputDataConfig inputDataConfig = new InvocationJobInputDataConfig() .withS3InputDataConfig(invocationJobS3InputDataConfig); final InvocationJobS3OutputDataConfig invocationJobS3OutputDataConfig = new InvocationJobS3OutputDataConfig() .withS3Uri("s3://batch-output/"); final InvocationJobOutputDataConfig invocationJobOutputDataConfig = new InvocationJobOutputDataConfig() .withS3OutputDataConfig(invocationJobS3OutputDataConfig); final CreateModelInvocationJobRequest createModelInvocationJobRequest = new CreateModelInvocationJobRequest() .withModelId("anthropic.claude-3-haiku-20240307-v1:0") .withJobName("unique-job-name") .withRoleArn("arn:aws:iam::123456789:role/bedrock-role") .withClientRequestToken("Client-token") .withInputDataConfig(inputDataConfig) .withOutputDataConfig(invocationJobOutputDataConfig); final CreateModelInvocationJobResult createModelInvocationJobResult = amazonBedrockAsyncClient .createModelInvocationJob(createModelInvocationJobRequest); System.out.println(createModelInvocationJobResult.getJobArn()); } public void getModelInvokeJobSampleCode() { final GetModelInvocationJobRequest getModelInvocationJobRequest = new GetModelInvocationJobRequest() .withJobIdentifier("jobArn"); final GetModelInvocationJobResult getModelInvocationJobResult = amazonBedrockAsyncClient .getModelInvocationJob(getModelInvocationJobRequest); } public void listModelInvokeJobSampleCode() { final ListModelInvocationJobsRequest listModelInvocationJobsRequest = new ListModelInvocationJobsRequest() .withMaxResults(10) .withNameContains("matchin-string"); final ListModelInvocationJobsResult listModelInvocationJobsResult = amazonBedrockAsyncClient .listModelInvocationJobs(listModelInvocationJobsRequest); } public void stopModelInvokeJobSampleCode() { final StopModelInvocationJobRequest stopModelInvocationJobRequest = new StopModelInvocationJobRequest() .withJobIdentifier("jobArn"); final StopModelInvocationJobResult stopModelInvocationJobResult = amazonBedrockAsyncClient .stopModelInvocationJob(stopModelInvocationJobRequest); } }