Esempi di Amazon Comprehend con AWS CLI - Esempi di codice dell'AWS SDK

Ci sono altri AWS SDK esempi disponibili nel repository AWS Doc SDK Examples GitHub .

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Esempi di Amazon Comprehend con AWS CLI

I seguenti esempi di codice mostrano come eseguire azioni e implementare scenari comuni utilizzando Amazon Comprehend. AWS Command Line Interface

Le operazioni sono estratti di codice da programmi più grandi e devono essere eseguite nel contesto. Sebbene le azioni mostrino come richiamare le singole funzioni di servizio, puoi vedere le azioni nel loro contesto negli scenari correlati.

Ogni esempio include un collegamento al codice sorgente completo, in cui è possibile trovare istruzioni su come configurare ed eseguire il codice nel contesto.

Argomenti

Azioni

Il seguente esempio di codice mostra come utilizzarebatch-detect-dominant-language.

AWS CLI

Per rilevare la lingua dominante di più testi in ingresso

L'batch-detect-dominant-languageesempio seguente analizza più testi di input e restituisce la lingua dominante di ciascuno di essi. Per ogni previsione viene inoltre emesso il punteggio di confidenza dei modelli preaddestrati.

aws comprehend batch-detect-dominant-language \ --text-list "Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

Output:

{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Dominant Language nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarebatch-detect-entities.

AWS CLI

Per rilevare entità da più testi di input

L'batch-detect-entitiesesempio seguente analizza più testi di input e restituisce le entità denominate di ciascuno. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend batch-detect-entities \ --language-code en \ --text-list "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

Output:

{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Entities nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarebatch-detect-key-phrases.

AWS CLI

Per rilevare frasi chiave di più input di testo

L'batch-detect-key-phrasesesempio seguente analizza più testi di input e restituisce le frasi nominali chiave di ciascuno di essi. Viene inoltre emesso il punteggio di confidenza del modello pre-addestrato per ogni previsione.

aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list "Hello Zhang Wei, I am John, writing to you about the trip for next Saturday." "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

Output:

{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta le frasi chiave nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarebatch-detect-sentiment.

AWS CLI

Per rilevare il sentimento prevalente di più testi in input

L'batch-detect-sentimentesempio seguente analizza più testi di input e restituisce il sentimento prevalente (POSITIVE,, o NEUTRALMIXED, di ciascuno di essi). NEGATIVE

aws comprehend batch-detect-sentiment \ --text-list "That movie was very boring, I can't believe it was over four hours long." "It is a beautiful day for hiking today." "My meal was okay, I'm excited to try other restaurants." \ --language-code en

Output:

{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Sentiment nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarebatch-detect-syntax.

AWS CLI

Per esaminare la sintassi e le parti del discorso delle parole in più testi di input

L'batch-detect-syntaxesempio seguente analizza la sintassi di più testi di input e restituisce le diverse parti del discorso. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend batch-detect-syntax \ --text-list "It is a beautiful day." "Can you please pass the salt?" "Please pay the bill before the 31st." \ --language-code en

Output:

{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Syntax Analysis nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarebatch-detect-targeted-sentiment.

AWS CLI

Per rilevare il sentimento e ogni entità denominata per più testi di input

L'batch-detect-targeted-sentimentesempio seguente analizza più testi di input e restituisce le entità denominate insieme al sentimento prevalente associato a ciascuna entità. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list "That movie was really boring, the original was way more entertaining" "The trail is extra beautiful today." "My meal was just okay."

Output:

{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }

Per ulteriori informazioni, consulta Targeted Sentiment nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzareclassify-document.

AWS CLI

Per classificare un documento con un endpoint specifico del modello

L'classify-documentesempio seguente classifica un documento con un punto finale di un modello personalizzato. Il modello in questo esempio è stato addestrato su un set di dati contenente messaggi sms etichettati come spam o non spam o «ham».

aws comprehend classify-document \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint \ --text "CONGRATULATIONS! TXT 1235550100 to win $5000"

Output:

{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }

Per ulteriori informazioni, consulta la sezione Classificazione personalizzata nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarecontains-pii-entities.

AWS CLI

Per analizzare il testo di input per verificare la presenza di PII informazioni

L'contains-pii-entitiesesempio seguente analizza il testo di input per verificare la presenza di informazioni di identificazione personale (PII) e restituisce le etichette dei tipi di PII entità identificati, quali nome, indirizzo, numero di conto corrente bancario o numero di telefono.

aws comprehend contains-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }

Per ulteriori informazioni, consulta Personally Identifiable Information (PII) nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarecreate-dataset.

AWS CLI

Per creare un set di dati Flywheel

L'create-datasetesempio seguente crea un set di dati per un volano. Questo set di dati verrà utilizzato come dati di addestramento aggiuntivi, come specificato dal tag. --dataset-type

aws comprehend create-dataset \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity \ --dataset-name example-dataset \ --dataset-type "TRAIN" \ --input-data-config file://inputConfig.json

Contenuto di file://inputConfig.json.

{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/training-data.csv" } }

Output:

{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }

Per ulteriori informazioni, consulta Flywheel Overview nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command CreateDatasetReference.

Il seguente esempio di codice mostra come utilizzarecreate-document-classifier.

AWS CLI

Per creare un classificatore di documenti per classificare i documenti

L'create-document-classifieresempio seguente inizia il processo di formazione per un modello di classificatore di documenti. Il file dei dati di addestramentotraining.csv,, si trova nel --input-data-config tag. training.csvè un documento a due colonne in cui le etichette o le classificazioni sono fornite nella prima colonna e i documenti sono forniti nella seconda colonna.

aws comprehend create-document-classifier \ --document-classifier-name example-classifier \ --data-access-arn arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --language-code en

Output:

{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

Per ulteriori informazioni, consulta la sezione Classificazione personalizzata nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarecreate-endpoint.

AWS CLI

Per creare un endpoint per un modello personalizzato

L'create-endpointesempio seguente crea un endpoint per l'inferenza sincrona per un modello personalizzato precedentemente addestrato.

aws comprehend create-endpoint \ --endpoint-name example-classifier-endpoint-1 \ --model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier \ --desired-inference-units 1

Output:

{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta Command CreateEndpointReference AWS CLI .

Il seguente esempio di codice mostra come utilizzarecreate-entity-recognizer.

AWS CLI

Per creare un riconoscitore di entità personalizzato

L'create-entity-recognizeresempio seguente inizia il processo di formazione per un modello di riconoscimento di entità personalizzato. Questo esempio utilizza un CSV file contenente documenti di addestramento e un elenco di CSV entità entity_list.csv per addestrare il modello. raw_text.csv entity-list.csvcontiene le seguenti colonne: testo e tipo.

aws comprehend create-entity-recognizer \ --recognizer-name example-entity-recognizer --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --input-data-config "EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_text.csv},EntityList={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv}" --language-code en

Output:

{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }

Per ulteriori informazioni, consulta il riconoscimento personalizzato delle entità nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarecreate-flywheel.

AWS CLI

Per creare un volano

L'create-flywheelesempio seguente crea un volano per orchestrare la formazione continua di un modello di classificazione dei documenti o di riconoscimento delle entità. Il volano in questo esempio viene creato per gestire un modello addestrato esistente specificato dal tag. --active-model-arn Quando viene creato il volano, viene creato un data lake sul tag. --input-data-lake

aws comprehend create-flywheel \ --flywheel-name example-flywheel \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1 \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --data-lake-s3-uri "s3://DOC-EXAMPLE-BUCKET"

Output:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }

Per ulteriori informazioni, consulta Flywheel Overview nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command CreateFlywheelReference.

Il seguente esempio di codice mostra come utilizzaredelete-document-classifier.

AWS CLI

Per eliminare un classificatore di documenti personalizzato

L'delete-document-classifieresempio seguente elimina un modello di classificatore di documenti personalizzato.

aws comprehend delete-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredelete-endpoint.

AWS CLI

Per eliminare un endpoint per un modello personalizzato

L'delete-endpointesempio seguente elimina un endpoint specifico del modello. Per eliminare il modello, è necessario eliminare tutti gli endpoint.

aws comprehend delete-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta Command DeleteEndpointReference AWS CLI .

Il seguente esempio di codice mostra come utilizzaredelete-entity-recognizer.

AWS CLI

Per eliminare un modello di riconoscimento delle entità personalizzato

L'delete-entity-recognizeresempio seguente elimina un modello di riconoscimento delle entità personalizzato.

aws comprehend delete-entity-recognizer \ --entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredelete-flywheel.

AWS CLI

Per eliminare un volano

L'delete-flywheelesempio seguente elimina un volano. Il data lake o il modello associato al volano non vengono eliminati.

aws comprehend delete-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command DeleteFlywheelReference.

Il seguente esempio di codice mostra come utilizzaredelete-resource-policy.

AWS CLI

Per eliminare una politica basata sulle risorse

L'delete-resource-policyesempio seguente elimina una policy basata sulle risorse da una risorsa Amazon Comprehend.

aws comprehend delete-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Copiare modelli personalizzati tra AWS account nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-dataset.

AWS CLI

Per descrivere un set di dati Flywheel

L'describe-datasetesempio seguente ottiene le proprietà di un set di dati Flywheel.

aws comprehend describe-dataset \ --dataset-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset

Output:

{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }

Per ulteriori informazioni, consulta Flywheel Overview nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-document-classification-job.

AWS CLI

Descrivere un lavoro di classificazione dei documenti

L'describe-document-classification-jobesempio seguente ottiene le proprietà di un processo asincrono di classificazione dei documenti.

aws comprehend describe-document-classification-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta la sezione Classificazione personalizzata nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-document-classifier.

AWS CLI

Per descrivere un classificatore di documenti

L'describe-document-classifieresempio seguente ottiene le proprietà di un modello di classificatore di documenti personalizzato.

aws comprehend describe-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

Output:

{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-dominant-language-detection-job.

AWS CLI

Descrivere un lavoro di rilevamento della lingua dominante.

L'describe-dominant-language-detection-jobesempio seguente ottiene le proprietà di un processo asincrono di rilevamento della lingua dominante.

aws comprehend describe-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-endpoint.

AWS CLI

Per descrivere un endpoint specifico

L'describe-endpointesempio seguente ottiene le proprietà di un endpoint specifico del modello.

aws comprehend describe-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint

Output:

{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-entities-detection-job.

AWS CLI

Per descrivere un processo di rilevamento delle entità

L'describe-entities-detection-jobesempio seguente ottiene le proprietà di un processo di rilevamento di entità asincrono.

aws comprehend describe-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-entity-recognizer.

AWS CLI

Per descrivere un riconoscitore di entità

L'describe-entity-recognizeresempio seguente ottiene le proprietà di un modello di riconoscimento di entità personalizzato.

aws comprehend describe-entity-recognizer \ entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1

Output:

{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }

Per ulteriori informazioni, consulta il riconoscimento personalizzato delle entità nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-events-detection-job.

AWS CLI

Per descrivere un processo di rilevamento degli eventi.

L'describe-events-detection-jobesempio seguente ottiene le proprietà di un processo asincrono di rilevamento degli eventi.

aws comprehend describe-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-flywheel-iteration.

AWS CLI

Per descrivere un'iterazione del volano

L'describe-flywheel-iterationesempio seguente ottiene le proprietà di un'iterazione del volano.

aws comprehend describe-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel \ --flywheel-iteration-id 20232222AEXAMPLE

Output:

{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-flywheel.

AWS CLI

Descrivere un volano

L'describe-flywheelesempio seguente ottiene le proprietà di un volano. In questo esempio, il modello associato al volano è un modello di classificatore personalizzato addestrato a classificare i documenti come spam o non spam oppure come «ham».

aws comprehend describe-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }

Per ulteriori informazioni, consulta Flywheel Overview nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-key-phrases-detection-job.

AWS CLI

Per descrivere un processo di rilevamento di frasi chiave

L'describe-key-phrases-detection-jobesempio seguente ottiene le proprietà di un processo di rilevamento asincrono di frasi chiave.

aws comprehend describe-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-pii-entities-detection-job.

AWS CLI

Per descrivere un processo di rilevamento delle PII entità

L'describe-pii-entities-detection-jobesempio seguente ottiene le proprietà di un processo asincrono di rilevamento di entità pii.

aws comprehend describe-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-resource-policy.

AWS CLI

Per descrivere una politica delle risorse allegata a un modello

L'describe-resource-policyesempio seguente ottiene le proprietà di una politica basata sulle risorse allegata a un modello.

aws comprehend describe-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

Output:

{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }

Per ulteriori informazioni, consulta Copiare modelli personalizzati tra AWS account nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-sentiment-detection-job.

AWS CLI

Descrivere un lavoro di rilevamento del sentiment

L'describe-sentiment-detection-jobesempio seguente ottiene le proprietà di un processo asincrono di rilevamento del sentiment.

aws comprehend describe-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-targeted-sentiment-detection-job.

AWS CLI

Descrivere un lavoro mirato di rilevamento dei sentimenti

L'describe-targeted-sentiment-detection-jobesempio seguente ottiene le proprietà di un processo asincrono mirato di rilevamento del sentiment.

aws comprehend describe-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredescribe-topics-detection-job.

AWS CLI

Per descrivere un lavoro di rilevamento di argomenti

L'describe-topics-detection-jobesempio seguente ottiene le proprietà di un processo asincrono di rilevamento degli argomenti.

aws comprehend describe-topics-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredetect-dominant-language.

AWS CLI

Per rilevare la lingua dominante del testo di input

Quanto segue detect-dominant-language analizza il testo di input e identifica la lingua dominante. Viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend detect-dominant-language \ --text "It is a beautiful day in Seattle."

Output:

{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }

Per ulteriori informazioni, consulta Dominant Language nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredetect-entities.

AWS CLI

Per rilevare entità denominate nel testo di input

L'detect-entitiesesempio seguente analizza il testo di input e restituisce le entità denominate. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend detect-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }

Per ulteriori informazioni, consulta Entities nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredetect-key-phrases.

AWS CLI

Per rilevare le frasi chiave nel testo di input

L'detect-key-phrasesesempio seguente analizza il testo di input e identifica le frasi nominali chiave. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend detect-key-phrases \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }

Per ulteriori informazioni, consulta le frasi chiave nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredetect-pii-entities.

AWS CLI

Per rilevare le entità pii nel testo di input

L'detect-pii-entitiesesempio seguente analizza il testo di input e identifica le entità che contengono informazioni di identificazione personale (). PII Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend detect-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

Output:

{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }

Per ulteriori informazioni, consulta Personally Identifiable Information (PII) nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaredetect-sentiment.

AWS CLI

Per rilevare il sentimento di un testo di input

L'detect-sentimentesempio seguente analizza il testo di input e restituisce un'inferenza del sentimento prevalente (POSITIVE,, o). NEUTRAL MIXED NEGATIVE

aws comprehend detect-sentiment \ --language-code en \ --text "It is a beautiful day in Seattle"

Output:

{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }

Per ulteriori informazioni, consulta Sentiment nella Amazon Comprehend Developer Guide

Il seguente esempio di codice mostra come utilizzaredetect-syntax.

AWS CLI

Per rilevare le parti del parlato in un testo di input

L'detect-syntaxesempio seguente analizza la sintassi del testo di input e restituisce le diverse parti del discorso. Per ogni previsione viene inoltre emesso il punteggio di confidenza del modello pre-addestrato.

aws comprehend detect-syntax \ --language-code en \ --text "It is a beautiful day in Seattle."

Output:

{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }

Per ulteriori informazioni, consulta Syntax Analysis nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command DetectSyntaxReference.

Il seguente esempio di codice mostra come utilizzaredetect-targeted-sentiment.

AWS CLI

Per rilevare il sentimento mirato delle entità denominate in un testo di input

L'detect-targeted-sentimentesempio seguente analizza il testo di input e restituisce le entità denominate oltre al sentimento mirato associato a ciascuna entità. Viene inoltre emesso il punteggio di confidenza dei modelli preaddestrati per ogni previsione.

aws comprehend detect-targeted-sentiment \ --language-code en \ --text "I do not enjoy January because it is too cold but August is the perfect temperature"

Output:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }

Per ulteriori informazioni, consulta Targeted Sentiment nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzareimport-model.

AWS CLI

Per importare un modello

L'import-modelesempio seguente importa un modello da un AWS account diverso. Il modello di classificazione dei documenti in account 444455556666 ha una politica basata sulle risorse che consente 111122223333 all'account di importare il modello.

aws comprehend import-model \ --source-model-arn arn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifier

Output:

{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

Per ulteriori informazioni, consulta Copiare modelli personalizzati tra AWS account nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command ImportModelReference.

Il seguente esempio di codice mostra come utilizzarelist-datasets.

AWS CLI

Per elencare tutti i set di dati Flywheel

L'list-datasetsesempio seguente elenca tutti i set di dati associati a un volano.

aws comprehend list-datasets \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity

Output:

{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }

Per ulteriori informazioni, consulta Flywheel Overview nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command ListDatasetsReference.

Il seguente esempio di codice mostra come utilizzarelist-document-classification-jobs.

AWS CLI

Per un elenco di tutti i lavori di classificazione dei documenti

L'list-document-classification-jobsesempio seguente elenca tutti i processi di classificazione dei documenti.

aws comprehend list-document-classification-jobs

Output:

{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta la sezione Classificazione personalizzata nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-document-classifier-summaries.

AWS CLI

Per elencare i riepiloghi di tutti i classificatori di documenti creati

L'list-document-classifier-summariesesempio seguente elenca tutti i riepiloghi dei classificatori di documenti creati.

aws comprehend list-document-classifier-summaries

Output:

{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-document-classifiers.

AWS CLI

Per un elenco di tutti i classificatori di documenti

L'list-document-classifiersesempio seguente elenca tutti i modelli di classificatori di documenti addestrati e in corso di formazione.

aws comprehend list-document-classifiers

Output:

{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-dominant-language-detection-jobs.

AWS CLI

Per elencare tutti i lavori di rilevamento della lingua dominante

L'list-dominant-language-detection-jobsesempio seguente elenca tutti i processi di rilevamento della lingua dominante asincroni in corso e completati.

aws comprehend list-dominant-language-detection-jobs

Output:

{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-endpoints.

AWS CLI

Per elencare tutti gli endpoint

L'list-endpointsesempio seguente elenca tutti gli endpoint attivi specifici del modello.

aws comprehend list-endpoints

Output:

{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta Command ListEndpointsReference AWS CLI .

Il seguente esempio di codice mostra come utilizzarelist-entities-detection-jobs.

AWS CLI

Per elencare tutti i processi di rilevamento delle entità

L'list-entities-detection-jobsesempio seguente elenca tutti i processi asincroni di rilevamento delle entità.

aws comprehend list-entities-detection-jobs

Output:

{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta Entities nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-entity-recognizer-summaries.

AWS CLI

All'elenco dei riepiloghi di tutti i riconoscitori di entità creati

L'list-entity-recognizer-summariesesempio seguente elenca tutti i riepiloghi di Entity Recognizer.

aws comprehend list-entity-recognizer-summaries

Output:

{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }

Per ulteriori informazioni, consulta il riconoscimento personalizzato delle entità nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-entity-recognizers.

AWS CLI

Per un elenco di tutti i riconoscitori di entità personalizzati

L'list-entity-recognizersesempio seguente elenca tutti i riconoscitori di entità personalizzati creati.

aws comprehend list-entity-recognizers

Output:

{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }

Per ulteriori informazioni, consulta il riconoscimento personalizzato delle entità nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-events-detection-jobs.

AWS CLI

Per elencare tutti i processi di rilevamento degli eventi

L'list-events-detection-jobsesempio seguente elenca tutti i processi asincroni di rilevamento degli eventi.

aws comprehend list-events-detection-jobs

Output:

{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-flywheel-iteration-history.

AWS CLI

Per elencare tutta la cronologia delle iterazioni del volano

L'list-flywheel-iteration-historyesempio seguente elenca tutte le iterazioni di un volano.

aws comprehend list-flywheel-iteration-history --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-flywheels.

AWS CLI

Per elencare tutti i volani

L'list-flywheelsesempio seguente elenca tutti i volani creati.

aws comprehend list-flywheels

Output:

{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command ListFlywheelsReference.

Il seguente esempio di codice mostra come utilizzarelist-key-phrases-detection-jobs.

AWS CLI

Per elencare tutte le frasi chiave, i lavori di rilevamento

L'list-key-phrases-detection-jobsesempio seguente elenca tutti i processi di rilevamento delle frasi chiave asincroni in corso e completati.

aws comprehend list-key-phrases-detection-jobs

Output:

{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-pii-entities-detection-jobs.

AWS CLI

Per elencare tutti i processi di rilevamento delle entità pii

L'list-pii-entities-detection-jobsesempio seguente elenca tutti i processi di rilevamento pii asincroni in corso e completati.

aws comprehend list-pii-entities-detection-jobs

Output:

{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-sentiment-detection-jobs.

AWS CLI

Per elencare tutti i lavori di rilevamento del sentiment

L'list-sentiment-detection-jobsesempio seguente elenca tutti i processi asincroni di rilevamento del sentiment in corso e completati.

aws comprehend list-sentiment-detection-jobs

Output:

{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-tags-for-resource.

AWS CLI

Per elencare i tag della risorsa

L'list-tags-for-resourceesempio seguente elenca i tag per una risorsa Amazon Comprehend.

aws comprehend list-tags-for-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

Output:

{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }

Per ulteriori informazioni, consulta Tagging your resources nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-targeted-sentiment-detection-jobs.

AWS CLI

Per elencare tutti i lavori mirati di rilevamento del sentiment

L'list-targeted-sentiment-detection-jobsesempio seguente elenca tutti i lavori asincroni mirati di rilevamento del sentiment in corso e completati.

aws comprehend list-targeted-sentiment-detection-jobs

Output:

{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarelist-topics-detection-jobs.

AWS CLI

Per elencare tutti i lavori di rilevamento degli argomenti

L'list-topics-detection-jobsesempio seguente elenca tutti i processi di rilevamento di argomenti asincroni in corso e completati.

aws comprehend list-topics-detection-jobs

Output:

{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzareput-resource-policy.

AWS CLI

Per allegare una politica basata sulle risorse

L'put-resource-policyesempio seguente allega una politica basata sulle risorse a un modello in modo che possa essere importato da un altro account. AWS La policy è allegata al modello in account 111122223333 e consente all'account di importare il modello. 444455556666

aws comprehend put-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --resource-policy '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'

Uscita:

{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }

Per ulteriori informazioni, consulta Copiare modelli personalizzati tra AWS account nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-document-classification-job.

AWS CLI

Per iniziare un lavoro di classificazione dei documenti

L'start-document-classification-jobesempio seguente avvia un processo di classificazione dei documenti con un modello personalizzato su tutti i file all'indirizzo specificato dal --input-data-config tag. In questo esempio, il bucket S3 di input contiene SampleSMStext1.txtSampleSMStext2.txt, e. SampleSMStext3.txt Il modello è stato precedentemente addestrato sulla classificazione dei documenti dei messaggi spam e non spam, o «ham». SMS Quando il lavoro è completo, output.tar.gz viene inserito nella posizione specificata dal --output-data-config tag. output.tar.gzcontiene predictions.jsonl che elenca la classificazione di ogni documento. L'output Json viene stampato su una riga per file, ma è formattato qui per garantire la leggibilità.

aws comprehend start-document-classification-job \ --job-name exampleclassificationjob \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET-INPUT/jobdata/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12

Contenuto di SampleSMStext1.txt.

"CONGRATULATIONS! TXT 2155550100 to win $5000"

Contenuto di SampleSMStext2.txt.

"Hi, when do you want me to pick you up from practice?"

Contenuto di SampleSMStext3.txt.

"Plz send bank account # to 2155550100 to claim prize!!"

Output:

{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di predictions.jsonl.

{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}

Per ulteriori informazioni, consulta la sezione Classificazione personalizzata nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-dominant-language-detection-job.

AWS CLI

Per avviare un processo asincrono di rilevamento della lingua

L'start-dominant-language-detection-jobesempio seguente avvia un processo asincrono di rilevamento della lingua per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config Il bucket S3 in questo esempio contiene. Sampletext1.txt Quando il lavoro è completo, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella output.txt contiene la lingua dominante di ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione.

aws comprehend start-dominant-language-detection-job \ --job-name example_language_analysis_job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Contenuto di Sampletext1.txt:

"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt.

{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-entities-detection-job.

AWS CLI

Esempio 1: per avviare un processo standard di rilevamento delle entità utilizzando il modello pre-addestrato

L'start-entities-detection-jobesempio seguente avvia un processo di rilevamento asincrono delle entità per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config Il bucket S3 in questo esempio contiene, e. Sampletext1.txt Sampletext2.txt Sampletext3.txt Quando il lavoro è completo, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella output.txt contiene un elenco di tutte le entità denominate rilevate in ogni file di testo, nonché il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L'output Json viene stampato su una riga per file di input, ma qui è formattato per motivi di leggibilità.

aws comprehend start-entities-detection-job \ --job-name entitiestest \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Esempio 2: per avviare un processo personalizzato di rilevamento delle entità

L'start-entities-detection-jobesempio seguente avvia un processo asincrono di rilevamento delle entità personalizzate per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config In questo esempio, il bucket S3 di questo esempio contiene, e. SampleFeedback1.txt SampleFeedback2.txt SampleFeedback3.txt Il modello Entity Recognizer è stato addestrato sulla base dei feedback dell'assistenza clienti per riconoscere i nomi dei dispositivi. Una volta completato il lavoro, la cartellaoutput, viene inserita nella posizione specificata dal --output-data-config tag. La cartella contieneoutput.txt, in cui sono elencate tutte le entità denominate rilevate in ogni file di testo, nonché il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L'output Json viene stampato su una riga per file, ma qui è formattato per motivi di leggibilità.

aws comprehend start-entities-detection-job \ --job-name customentitiestest \ --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer" \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/jobdata/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"

Contenuto di SampleFeedback1.txt.

"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"

Contenuto di SampleFeedback2.txt.

"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"

Contenuto di SampleFeedback3.txt.

"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"

Output:

{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }

Per ulteriori informazioni, consulta il riconoscimento personalizzato delle entità nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-events-detection-job.

AWS CLI

Per avviare un processo asincrono di rilevamento degli eventi

L'start-events-detection-jobesempio seguente avvia un processo asincrono di rilevamento degli eventi per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config I possibili tipi di eventi di destinazione includono BANKRUPCTYEMPLOYMENT,CORPORATE_ACQUISITION,INVESTMENT_GENERAL,,CORPORATE_MERGER,IPO,RIGHTS_ISSUE, SECONDARY_OFFERINGSHELF_OFFERING, TENDER_OFFERING e. STOCK_SPLIT Il bucket S3 in questo esempio contiene SampleText1.txtSampleText2.txt, e. SampleText3.txt Quando il lavoro è completo, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella contiene SampleText1.txt.outSampleText2.txt.out, eSampleText3.txt.out. L'JSONoutput viene stampato su una riga per file, ma qui è formattato per motivi di leggibilità.

aws comprehend start-events-detection-job \ --job-name events-detection-1 \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/EventsData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole \ --language-code en \ --target-event-types "BANKRUPTCY" "EMPLOYMENT" "CORPORATE_ACQUISITION" "CORPORATE_MERGER" "INVESTMENT_GENERAL"

Contenuto di SampleText1.txt.

"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."

Contenuto di SampleText2.txt.

"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."

Contenuto di SampleText3.txt.

"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di SampleText1.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }

Contenuto di SampleText2.txt.out.

{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }

Contenuto di SampleText3.txt.out.

{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-flywheel-iteration.

AWS CLI

Per avviare un'iterazione del volano

L'start-flywheel-iterationesempio seguente avvia un'iterazione del volano. Questa operazione utilizza qualsiasi nuovo set di dati nel volano per addestrare una nuova versione del modello.

aws comprehend start-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

Output:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-key-phrases-detection-job.

AWS CLI

Per avviare un processo di rilevamento di frasi chiave

L'start-key-phrases-detection-jobesempio seguente avvia un processo di rilevamento asincrono delle frasi chiave per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config Il bucket S3 in questo esempio contiene, e. Sampletext1.txt Sampletext2.txt Sampletext3.txt Una volta completato il lavoro, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella contiene il file output.txt che contiene tutte le frasi chiave rilevate in ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L'output Json viene stampato su una riga per file, ma è formattato qui per garantire la leggibilità.

aws comprehend start-key-phrases-detection-job \ --job-name keyphrasesanalysistest1 \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" \ --language-code en

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con rientri di riga per la leggibilità:

{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-pii-entities-detection-job.

AWS CLI

Per avviare un processo di rilevamento asincrono PII

L'start-pii-entities-detection-jobesempio seguente avvia un processo asincrono di rilevamento delle entità di informazioni di identificazione personale (PII) per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config Il bucket S3 in questo esempio contiene, e. Sampletext1.txt Sampletext2.txt Sampletext3.txt Quando il lavoro è completo, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella contiene SampleText1.txt.out e elenca SampleText3.txt.out le entità denominate all'interno di ogni file di testo. SampleText2.txt.out L'output Json viene stampato su una riga per file, ma qui è formattato per motivi di leggibilità.

aws comprehend start-pii-entities-detection-job \ --job-name entities_test \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en \ --mode ONLY_OFFSETS

Contenuto di Sampletext1.txt.

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Contenuto di Sampletext2.txt.

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Contenuto di Sampletext3.txt.

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Contenuto di SampleText1.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }

Contenuto della confezione SampleText2.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }

Contenuto della confezione SampleText3.txt.out con rientri di riga per una maggiore leggibilità:

{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-sentiment-detection-job.

AWS CLI

Per avviare un lavoro asincrono di analisi del sentiment

L'start-sentiment-detection-jobesempio seguente avvia un processo asincrono di rilevamento dell'analisi del sentiment per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config La cartella bucket S3 in questo esempio contiene, e. SampleMovieReview1.txt SampleMovieReview2.txt SampleMovieReview3.txt Quando il lavoro è completo, la cartella,output, viene posizionata nella posizione specificata dal --output-data-config tag. La cartella contiene il fileoutput.txt, che contiene i sentimenti prevalenti per ogni file di testo e il punteggio di affidabilità del modello pre-addestrato per ogni previsione. L'output Json viene stampato su una riga per file, ma qui è formattato per garantire la leggibilità.

aws comprehend start-sentiment-detection-job \ --job-name example-sentiment-detection-job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

Contenuto di SampleMovieReview1.txt.

"The film, AnyMovie2, is fairly predictable and just okay."

Contenuto di SampleMovieReview2.txt.

"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

Contenuto di SampleMovieReview3.txt.

"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."

Output:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

Contenuto di output.txt con riga di rientri per garantire la leggibilità:

{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-targeted-sentiment-detection-job.

AWS CLI

Per avviare un lavoro asincrono di analisi mirata del sentiment

L'start-targeted-sentiment-detection-jobesempio seguente avvia un processo asincrono di rilevamento mirato del sentiment per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config La cartella bucket S3 in questo esempio contiene, e. SampleMovieReview1.txt SampleMovieReview2.txt SampleMovieReview3.txt Quando il lavoro è completo, output.tar.gz viene posizionato nella posizione specificata dal --output-data-config tag. output.tar.gzcontiene i file e SampleMovieReview1.txt.out SampleMovieReview2.txt.outSampleMovieReview3.txt.out, ciascuno dei quali contiene tutte le entità denominate e i sentimenti associati per un singolo file di testo di input.

aws comprehend start-targeted-sentiment-detection-job \ --job-name targeted_movie_review_analysis1 \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

Contenuto di SampleMovieReview1.txt.

"The film, AnyMovie, is fairly predictable and just okay."

Contenuto di SampleMovieReview2.txt.

"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

Contenuto di SampleMovieReview3.txt.

"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."

Output:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

Contenuto di SampleMovieReview1.txt.out con rientri a riga per una maggiore leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }

Contenuto dei rientri di SampleMovieReview2.txt.out riga per motivi di leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }

Contenuto della confezione SampleMovieReview3.txt.out con rientri di riga per garantire la leggibilità:

{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestart-topics-detection-job.

AWS CLI

Per avviare un lavoro di analisi del rilevamento di argomenti

L'start-topics-detection-jobesempio seguente avvia un processo asincrono di rilevamento degli argomenti per tutti i file che si trovano all'indirizzo specificato dal tag. --input-data-config Quando il processo è completo, la cartella,output, viene posizionata nella posizione specificata dal tag. --ouput-data-config outputcontiene topic-terms.csv e doc-topics.csv. Il primo file di output, topic-terms.csv, è un elenco di argomenti della raccolta. Per ogni argomento, l'elenco include, per impostazione predefinita, i termini principali per argomento in base al loro peso. Il secondo file elenca i documenti associati a un argomento e la proporzione del documento che riguarda l'argomento. doc-topics.csv

aws comprehend start-topics-detection-job \ --job-name example_topics_detection_job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

Per ulteriori informazioni, consulta Topic Modeling nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-dominant-language-detection-job.

AWS CLI

Per interrompere un processo asincrono di rilevamento della lingua dominante

L'stop-dominant-language-detection-jobesempio seguente interrompe un processo di rilevamento asincrono della lingua dominante in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-entities-detection-job.

AWS CLI

Per interrompere un processo di rilevamento di entità asincrone

L'stop-entities-detection-jobesempio seguente interrompe un processo di rilevamento di entità asincrone in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-events-detection-job.

AWS CLI

Per interrompere un processo asincrono di rilevamento degli eventi

L'stop-events-detection-jobesempio seguente interrompe un processo di rilevamento di eventi asincrono in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato per l'interruzione e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-key-phrases-detection-job.

AWS CLI

Per interrompere un processo di rilevamento asincrono di frasi chiave

L'stop-key-phrases-detection-jobesempio seguente interrompe un processo di rilevamento di frasi chiave asincrone in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-pii-entities-detection-job.

AWS CLI

Per interrompere un processo asincrono di rilevamento di entità pii

L'stop-pii-entities-detection-jobesempio seguente interrompe un processo di rilevamento di entità pii asincrone in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-sentiment-detection-job.

AWS CLI

Per interrompere un processo asincrono di rilevamento del sentiment

L'stop-sentiment-detection-jobesempio seguente interrompe un processo asincrono di rilevamento del sentiment in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-targeted-sentiment-detection-job.

AWS CLI

Per interrompere un processo asincrono di rilevamento mirato del sentiment

L'stop-targeted-sentiment-detection-jobesempio seguente interrompe un processo asincrono di rilevamento mirato del sentiment in corso. Se lo stato corrente del lavoro è, IN_PROGRESS il lavoro viene contrassegnato come terminato e inserito nello stato. STOP_REQUESTED Se il processo viene completato prima di poter essere interrotto, viene messo nello COMPLETED stato.

aws comprehend stop-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

Output:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

Per ulteriori informazioni, consulta l'analisi asincrona per Amazon Comprehend Insights nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-training-document-classifier.

AWS CLI

Per interrompere l'addestramento di un modello di classificazione dei documenti

L'stop-training-document-classifieresempio seguente interrompe l'addestramento di un modello di classificatore di documenti in corso.

aws comprehend stop-training-document-classifier --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzarestop-training-entity-recognizer.

AWS CLI

Per interrompere l'addestramento di un modello di riconoscimento delle entità

L'stop-training-entity-recognizeresempio seguente interrompe l'addestramento di un modello di riconoscimento delle entità mentre è in corso.

aws comprehend stop-training-entity-recognizer --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Creazione e gestione di modelli personalizzati nella Amazon Comprehend Developer Guide.

Il seguente esempio di codice mostra come utilizzaretag-resource.

AWS CLI

Esempio 1: etichettare una risorsa

L'tag-resourceesempio seguente aggiunge un singolo tag a una risorsa Amazon Comprehend.

aws comprehend tag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --tags Key=Location,Value=Seattle

Questo comando non ha alcun output.

Per ulteriori informazioni, consulta Tagging your resources nella Amazon Comprehend Developer Guide.

Esempio 2: per aggiungere più tag a una risorsa

L'tag-resourceesempio seguente aggiunge più tag a una risorsa Amazon Comprehend.

aws comprehend tag-resource \ --resource-arn "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1" \ --tags Key=location,Value=Seattle Key=Department,Value=Finance

Questo comando non ha alcun output.

Per ulteriori informazioni, consulta Tagging your resources nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command TagResourceReference.

Il seguente esempio di codice mostra come utilizzareuntag-resource.

AWS CLI

Esempio 1: rimuovere un singolo tag da una risorsa

L'untag-resourceesempio seguente rimuove un singolo tag da una risorsa Amazon Comprehend.

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Tagging your resources nella Amazon Comprehend Developer Guide.

Esempio 2: rimuovere più tag da una risorsa

L'untag-resourceesempio seguente rimuove più tag da una risorsa Amazon Comprehend.

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location Department

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Tagging your resources nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command UntagResourceReference.

Il seguente esempio di codice mostra come utilizzareupdate-endpoint.

AWS CLI

Esempio 1: aggiornare le unità di inferenza di un endpoint

L'update-endpointesempio seguente aggiorna le informazioni su un endpoint. In questo esempio, il numero di unità di inferenza viene aumentato.

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --desired-inference-units 2

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

Esempio 2: aggiornare il modello attivo di un endpoint

L'update-endpointesempio seguente aggiorna le informazioni su un endpoint. In questo esempio, il modello attivo viene modificato.

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-new

Questo comando non produce alcun output.

Per ulteriori informazioni, consulta Managing Amazon Comprehend endpoint nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta Command UpdateEndpointReference AWS CLI .

Il seguente esempio di codice mostra come utilizzareupdate-flywheel.

AWS CLI

Per aggiornare una configurazione del volano

L'update-flywheelesempio seguente aggiorna una configurazione del volano. In questo esempio, il modello attivo per il volano viene aggiornato.

aws comprehend update-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1 \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model

Output:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }

Per ulteriori informazioni, consulta la panoramica di Flywheel nella Amazon Comprehend Developer Guide.

  • Per API i dettagli, consulta AWS CLI Command UpdateFlywheelReference.