Doc AWS SDK ExamplesWord リポジトリには、さらに多くの GitHub の例があります。 AWS SDK
翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。
SDK for Java 2.x を使用した Amazon Rekognition の例
次のコード例は、Amazon Rekognition AWS SDK for Java 2.x で を使用してアクションを実行し、一般的なシナリオを実装する方法を示しています。
アクションはより大きなプログラムからのコードの抜粋であり、コンテキスト内で実行する必要があります。アクションは個々のサービス機能を呼び出す方法を示していますが、コンテキスト内のアクションは、関連するシナリオで確認できます。
「シナリオ」は、1 つのサービス内から、または他の AWS のサービスと組み合わせて複数の関数を呼び出し、特定のタスクを実行する方法を示すコード例です。
各例には、完全なソースコードへのリンクが含まれています。ここでは、コンテキストでコードを設定および実行する方法の手順を確認できます。
アクション
次のコード例は、CompareFaces
を使用する方法を示しています。
詳細については、「イメージ内の顔を比較する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.CompareFacesRequest; import software.amazon.awssdk.services.rekognition.model.CompareFacesResponse; import software.amazon.awssdk.services.rekognition.model.CompareFacesMatch; import software.amazon.awssdk.services.rekognition.model.ComparedFace; import software.amazon.awssdk.services.rekognition.model.BoundingBox; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CompareFaces { public static void main(String[] args) { final String usage = """ Usage: <pathSource> <pathTarget> Where: pathSource - The path to the source image (for example, C:\\AWS\\pic1.png).\s pathTarget - The path to the target image (for example, C:\\AWS\\pic2.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } Float similarityThreshold = 70F; String sourceImage = args[0]; String targetImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); compareTwoFaces(rekClient, similarityThreshold, sourceImage, targetImage); rekClient.close(); } public static void compareTwoFaces(RekognitionClient rekClient, Float similarityThreshold, String sourceImage, String targetImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); InputStream tarStream = new FileInputStream(targetImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); SdkBytes targetBytes = SdkBytes.fromInputStream(tarStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); Image tarImage = Image.builder() .bytes(targetBytes) .build(); CompareFacesRequest facesRequest = CompareFacesRequest.builder() .sourceImage(souImage) .targetImage(tarImage) .similarityThreshold(similarityThreshold) .build(); // Compare the two images. CompareFacesResponse compareFacesResult = rekClient.compareFaces(facesRequest); List<CompareFacesMatch> faceDetails = compareFacesResult.faceMatches(); for (CompareFacesMatch match : faceDetails) { ComparedFace face = match.face(); BoundingBox position = face.boundingBox(); System.out.println("Face at " + position.left().toString() + " " + position.top() + " matches with " + face.confidence().toString() + "% confidence."); } List<ComparedFace> uncompared = compareFacesResult.unmatchedFaces(); System.out.println("There was " + uncompared.size() + " face(s) that did not match"); System.out.println("Source image rotation: " + compareFacesResult.sourceImageOrientationCorrection()); System.out.println("target image rotation: " + compareFacesResult.targetImageOrientationCorrection()); } catch (RekognitionException | FileNotFoundException e) { System.out.println("Failed to load source image " + sourceImage); System.exit(1); } } }
-
API の詳細については、CompareFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、CreateCollection
を使用する方法を説明しています。
詳細については、「コレクションを作成する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.CreateCollectionResponse; import software.amazon.awssdk.services.rekognition.model.CreateCollectionRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CreateCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName>\s Where: collectionName - The name of the collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Creating collection: " + collectionId); createMyCollection(rekClient, collectionId); rekClient.close(); } public static void createMyCollection(RekognitionClient rekClient, String collectionId) { try { CreateCollectionRequest collectionRequest = CreateCollectionRequest.builder() .collectionId(collectionId) .build(); CreateCollectionResponse collectionResponse = rekClient.createCollection(collectionRequest); System.out.println("CollectionArn: " + collectionResponse.collectionArn()); System.out.println("Status code: " + collectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、CreateCollection AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、DeleteCollection
を使用する方法を示しています。
詳細については、「コレクションを削除する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId>\s Where: collectionId - The id of the collection to delete.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteMyCollection(rekClient, collectionId); rekClient.close(); } public static void deleteMyCollection(RekognitionClient rekClient, String collectionId) { try { DeleteCollectionRequest deleteCollectionRequest = DeleteCollectionRequest.builder() .collectionId(collectionId) .build(); DeleteCollectionResponse deleteCollectionResponse = rekClient.deleteCollection(deleteCollectionRequest); System.out.println(collectionId + ": " + deleteCollectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DeleteCollection AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、DeleteFaces
を使用する方法を説明しています。
詳細については、「コレクションから顔を削除する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteFacesRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteFacesFromCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <faceId>\s Where: collectionId - The id of the collection from which faces are deleted.\s faceId - The id of the face to delete.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteFacesCollection(rekClient, collectionId, faceId); rekClient.close(); } public static void deleteFacesCollection(RekognitionClient rekClient, String collectionId, String faceId) { try { DeleteFacesRequest deleteFacesRequest = DeleteFacesRequest.builder() .collectionId(collectionId) .faceIds(faceId) .build(); rekClient.deleteFaces(deleteFacesRequest); System.out.println("The face was deleted from the collection."); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DeleteFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、DescribeCollection
を使用する方法を説明しています。
詳細については、「コレクションを定義する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DescribeCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName> Where: collectionName - The name of the Amazon Rekognition collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionName = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); describeColl(rekClient, collectionName); rekClient.close(); } public static void describeColl(RekognitionClient rekClient, String collectionName) { try { DescribeCollectionRequest describeCollectionRequest = DescribeCollectionRequest.builder() .collectionId(collectionName) .build(); DescribeCollectionResponse describeCollectionResponse = rekClient .describeCollection(describeCollectionRequest); System.out.println("Collection Arn : " + describeCollectionResponse.collectionARN()); System.out.println("Created : " + describeCollectionResponse.creationTimestamp().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DescribeCollection AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、DetectFaces
を使用する方法を示しています。
詳細については、「イメージ内の顔を検出する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.DetectFacesRequest; import software.amazon.awssdk.services.rekognition.model.DetectFacesResponse; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceDetail; import software.amazon.awssdk.services.rekognition.model.AgeRange; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectFaces { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectFacesinImage(rekClient, sourceImage); rekClient.close(); } public static void detectFacesinImage(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectFacesRequest facesRequest = DetectFacesRequest.builder() .attributes(Attribute.ALL) .image(souImage) .build(); DetectFacesResponse facesResponse = rekClient.detectFaces(facesRequest); List<FaceDetail> faceDetails = facesResponse.faceDetails(); for (FaceDetail face : faceDetails) { AgeRange ageRange = face.ageRange(); System.out.println("The detected face is estimated to be between " + ageRange.low().toString() + " and " + ageRange.high().toString() + " years old."); System.out.println("There is a smile : " + face.smile().value().toString()); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DetectFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、DetectLabels
を使用する方法を説明しています。
詳細については、「イメージ内のラベルを検出する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectLabelsResponse; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectLabels { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectImageLabels(rekClient, sourceImage); rekClient.close(); } public static void detectImageLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectLabelsRequest detectLabelsRequest = DetectLabelsRequest.builder() .image(souImage) .maxLabels(10) .build(); DetectLabelsResponse labelsResponse = rekClient.detectLabels(detectLabelsRequest); List<Label> labels = labelsResponse.labels(); System.out.println("Detected labels for the given photo"); for (Label label : labels) { System.out.println(label.name() + ": " + label.confidence().toString()); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DetectLabels AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、DetectModerationLabels
を使用する方法を示しています。
詳細については、「不適切なイメージを検出する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsResponse; import software.amazon.awssdk.services.rekognition.model.ModerationLabel; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectModerationLabels { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length < 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectModLabels(rekClient, sourceImage); rekClient.close(); } public static void detectModLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectModerationLabelsRequest moderationLabelsRequest = DetectModerationLabelsRequest.builder() .image(souImage) .minConfidence(60F) .build(); DetectModerationLabelsResponse moderationLabelsResponse = rekClient .detectModerationLabels(moderationLabelsRequest); List<ModerationLabel> labels = moderationLabelsResponse.moderationLabels(); System.out.println("Detected labels for image"); for (ModerationLabel label : labels) { System.out.println("Label: " + label.name() + "\n Confidence: " + label.confidence().toString() + "%" + "\n Parent:" + label.parentName()); } } catch (RekognitionException | FileNotFoundException e) { e.printStackTrace(); System.exit(1); } } }
-
API の詳細については、DetectModerationLabels AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、DetectText
を使用する方法を示しています。
詳細については、「イメージ内のテキストを検出する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DetectTextRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectTextResponse; import software.amazon.awssdk.services.rekognition.model.TextDetection; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectText { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image that contains text (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectTextLabels(rekClient, sourceImage); rekClient.close(); } public static void detectTextLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectTextRequest textRequest = DetectTextRequest.builder() .image(souImage) .build(); DetectTextResponse textResponse = rekClient.detectText(textRequest); List<TextDetection> textCollection = textResponse.textDetections(); System.out.println("Detected lines and words"); for (TextDetection text : textCollection) { System.out.println("Detected: " + text.detectedText()); System.out.println("Confidence: " + text.confidence().toString()); System.out.println("Id : " + text.id()); System.out.println("Parent Id: " + text.parentId()); System.out.println("Type: " + text.type()); System.out.println(); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、DetectText AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、IndexFaces
を使用する方法を説明しています。
詳細については、「コレクションに顔を追加する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.IndexFacesResponse; import software.amazon.awssdk.services.rekognition.model.IndexFacesRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.QualityFilter; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceRecord; import software.amazon.awssdk.services.rekognition.model.UnindexedFace; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Reason; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionName - The name of the collection. sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); addToCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void addToCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(souImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、IndexFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、ListCollections
を使用する方法を示しています。
コレクションの詳細については、「コレクションを一覧表示する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.ListCollectionsRequest; import software.amazon.awssdk.services.rekognition.model.ListCollectionsResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListCollections { public static void main(String[] args) { Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Listing collections"); listAllCollections(rekClient); rekClient.close(); } public static void listAllCollections(RekognitionClient rekClient) { try { ListCollectionsRequest listCollectionsRequest = ListCollectionsRequest.builder() .maxResults(10) .build(); ListCollectionsResponse response = rekClient.listCollections(listCollectionsRequest); List<String> collectionIds = response.collectionIds(); for (String resultId : collectionIds) { System.out.println(resultId); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、ListCollections AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、ListFaces
を使用する方法を説明しています。
詳細については、「コレクションに顔を保存する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Face; import software.amazon.awssdk.services.rekognition.model.ListFacesRequest; import software.amazon.awssdk.services.rekognition.model.ListFacesResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListFacesInCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> Where: collectionId - The name of the collection.\s """; if (args.length < 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Faces in collection " + collectionId); listFacesCollection(rekClient, collectionId); rekClient.close(); } public static void listFacesCollection(RekognitionClient rekClient, String collectionId) { try { ListFacesRequest facesRequest = ListFacesRequest.builder() .collectionId(collectionId) .maxResults(10) .build(); ListFacesResponse facesResponse = rekClient.listFaces(facesRequest); List<Face> faces = facesResponse.faces(); for (Face face : faces) { System.out.println("Confidence level there is a face: " + face.confidence()); System.out.println("The face Id value is " + face.faceId()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、ListFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次の例は、RecognizeCelebrities
を使用する方法を説明しています。
詳細については、「イメージ内で有名人を認識する」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; import software.amazon.awssdk.services.rekognition.model.RecognizeCelebritiesRequest; import software.amazon.awssdk.services.rekognition.model.RecognizeCelebritiesResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Celebrity; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class RecognizeCelebrities { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Locating celebrities in " + sourceImage); recognizeAllCelebrities(rekClient, sourceImage); rekClient.close(); } public static void recognizeAllCelebrities(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); RecognizeCelebritiesRequest request = RecognizeCelebritiesRequest.builder() .image(souImage) .build(); RecognizeCelebritiesResponse result = rekClient.recognizeCelebrities(request); List<Celebrity> celebs = result.celebrityFaces(); System.out.println(celebs.size() + " celebrity(s) were recognized.\n"); for (Celebrity celebrity : celebs) { System.out.println("Celebrity recognized: " + celebrity.name()); System.out.println("Celebrity ID: " + celebrity.id()); System.out.println("Further information (if available):"); for (String url : celebrity.urls()) { System.out.println(url); } System.out.println(); } System.out.println(result.unrecognizedFaces().size() + " face(s) were unrecognized."); } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、RecognizeCelebrities AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、SearchFaces
を使用する方法を示しています。
詳細については、顔 (フェイス ID) を検索する を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingImageCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFaceInCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void searchFaceInCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(new File(sourceImage)); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); SearchFacesByImageRequest facesByImageRequest = SearchFacesByImageRequest.builder() .image(souImage) .maxFaces(10) .faceMatchThreshold(70F) .collectionId(collectionId) .build(); SearchFacesByImageResponse imageResponse = rekClient.searchFacesByImage(facesByImageRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、SearchFaces AWS SDK for Java 2.x リファレンスの API を参照してください。
-
次のコード例は、SearchFacesByImage
を使用する方法を示しています。
詳細については、「顔を検索する (イメージ)」を参照してください。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.SearchFacesRequest; import software.amazon.awssdk.services.rekognition.model.SearchFacesResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingIdCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFacebyId(rekClient, collectionId, faceId); rekClient.close(); } public static void searchFacebyId(RekognitionClient rekClient, String collectionId, String faceId) { try { SearchFacesRequest searchFacesRequest = SearchFacesRequest.builder() .collectionId(collectionId) .faceId(faceId) .faceMatchThreshold(70F) .maxFaces(2) .build(); SearchFacesResponse imageResponse = rekClient.searchFaces(searchFacesRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、SearchFacesByImage AWS SDK for Java 2.x リファレンスの API を参照してください。
-
シナリオ
次のコード例では、ユーザーがラベルを使用して写真を管理できるサーバーレスアプリケーションを作成する方法について示しています。
- Java 2.x のSDK
-
Amazon Rekognition を使用して画像内のラベルを検出し、保存して後で取得できるようにする写真アセット管理アプリケーションの開発方法を示します。
完全なソースコードとセットアップと実行の手順については、 GitHub
の詳細な例を参照してください。 この例のソースについて詳しくは、AWS コミュニティ
でブログ投稿を参照してください。 この例で使用されているサービス
APIゲートウェイ
DynamoDB
Lambda
Amazon Rekognition
Amazon S3
Amazon SNS
次のコード例は、Amazon Rekognition を使用して画像内の個人用保護具 (PPE) を検出するアプリケーションを構築する方法を示しています。
- Java 2.x のSDK
-
Personal Protective Equipment でイメージを検出する AWS Lambda 関数を作成する方法を示します。
完全なソースコードとセットアップと実行の手順については、GitHub
の詳細な例を参照してください。 この例で使用されているサービス
DynamoDB
Amazon Rekognition
Amazon S3
Amazon SES
次のコードサンプルは、以下の操作方法を示しています。
Amazon Rekognition のジョブを開始し、人物、オブジェクト、テキストなどの要素を動画から検出します。
ジョブが完了するまでジョブのステータスを確認します。
検出された要素のリストをジョブごとに出力します。
- Java 2.x のSDK
-
注記
GitHub には他にもあります。用例一覧を検索し、AWS コード例リポジトリ
での設定と実行の方法を確認してください。 Amazon S3 バケット内のビデオから有名人の結果を取得します。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognitionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognition; import software.amazon.awssdk.services.rekognition.model.CelebrityDetail; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionResponse; import java.util.List; /** * To run this code example, ensure that you perform the Prerequisites as stated * in the Amazon Rekognition Guide: * https://docs.aws.amazon.com/rekognition/latest/dg/video-analyzing-with-sqs.html * * Also, ensure that set up your development environment, including your * credentials. * * For information, see this documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoCelebrityDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startCelebrityDetection(rekClient, channel, bucket, video); getCelebrityDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startCelebrityDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartCelebrityRecognitionRequest recognitionRequest = StartCelebrityRecognitionRequest.builder() .jobTag("Celebrities") .notificationChannel(channel) .video(vidOb) .build(); StartCelebrityRecognitionResponse startCelebrityRecognitionResult = rekClient .startCelebrityRecognition(recognitionRequest); startJobId = startCelebrityRecognitionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getCelebrityDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetCelebrityRecognitionResponse recognitionResponse = null; boolean finished = false; String status; int yy = 0; do { if (recognitionResponse != null) paginationToken = recognitionResponse.nextToken(); GetCelebrityRecognitionRequest recognitionRequest = GetCelebrityRecognitionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .sortBy(CelebrityRecognitionSortBy.TIMESTAMP) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { recognitionResponse = rekClient.getCelebrityRecognition(recognitionRequest); status = recognitionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = recognitionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<CelebrityRecognition> celebs = recognitionResponse.celebrities(); for (CelebrityRecognition celeb : celebs) { long seconds = celeb.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); CelebrityDetail details = celeb.celebrity(); System.out.println("Name: " + details.name()); System.out.println("Id: " + details.id()); System.out.println(); } } while (recognitionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
ラベル検出オペレーションによって、ビデオ内のラベルを検出します。
import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }
Amazon S3 バケットに保存されたビデオ内の顔を検出する
import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }
Amazon S3 バケットに保存されたビデオ内の不適切なコンテンツや攻撃的なコンテンツを検出します。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.StartContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.GetContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.ContentModerationDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectInappropriate { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startModerationDetection(rekClient, channel, bucket, video); getModResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startModerationDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartContentModerationRequest modDetectionRequest = StartContentModerationRequest.builder() .jobTag("Moderation") .notificationChannel(channel) .video(vidOb) .build(); StartContentModerationResponse startModDetectionResult = rekClient .startContentModeration(modDetectionRequest); startJobId = startModDetectionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getModResults(RekognitionClient rekClient) { try { String paginationToken = null; GetContentModerationResponse modDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (modDetectionResponse != null) paginationToken = modDetectionResponse.nextToken(); GetContentModerationRequest modRequest = GetContentModerationRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { modDetectionResponse = rekClient.getContentModeration(modRequest); status = modDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = modDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<ContentModerationDetection> mods = modDetectionResponse.moderationLabels(); for (ContentModerationDetection mod : mods) { long seconds = mod.timestamp() / 1000; System.out.print("Mod label: " + seconds + " "); System.out.println(mod.moderationLabel().toString()); System.out.println(); } } while (modDetectionResponse != null && modDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
Amazon S3 バケットに保存されているビデオ内のテクニカルキューセグメントおよびショット検出セグメントを検出します。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartShotDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartTechnicalCueDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionFilters; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.SegmentDetection; import software.amazon.awssdk.services.rekognition.model.TechnicalCueSegment; import software.amazon.awssdk.services.rekognition.model.ShotSegment; import software.amazon.awssdk.services.rekognition.model.SegmentType; import software.amazon.awssdk.services.sqs.SqsClient; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectSegment { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startSegmentDetection(rekClient, channel, bucket, video); getSegmentResults(rekClient); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startSegmentDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartShotDetectionFilter cueDetectionFilter = StartShotDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartTechnicalCueDetectionFilter technicalCueDetectionFilter = StartTechnicalCueDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartSegmentDetectionFilters filters = StartSegmentDetectionFilters.builder() .shotFilter(cueDetectionFilter) .technicalCueFilter(technicalCueDetectionFilter) .build(); StartSegmentDetectionRequest segDetectionRequest = StartSegmentDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .segmentTypes(SegmentType.TECHNICAL_CUE, SegmentType.SHOT) .video(vidOb) .filters(filters) .build(); StartSegmentDetectionResponse segDetectionResponse = rekClient.startSegmentDetection(segDetectionRequest); startJobId = segDetectionResponse.jobId(); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } public static void getSegmentResults(RekognitionClient rekClient) { try { String paginationToken = null; GetSegmentDetectionResponse segDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (segDetectionResponse != null) paginationToken = segDetectionResponse.nextToken(); GetSegmentDetectionRequest recognitionRequest = GetSegmentDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { segDetectionResponse = rekClient.getSegmentDetection(recognitionRequest); status = segDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. List<VideoMetadata> videoMetaData = segDetectionResponse.videoMetadata(); for (VideoMetadata metaData : videoMetaData) { System.out.println("Format: " + metaData.format()); System.out.println("Codec: " + metaData.codec()); System.out.println("Duration: " + metaData.durationMillis()); System.out.println("FrameRate: " + metaData.frameRate()); System.out.println("Job"); } List<SegmentDetection> detectedSegments = segDetectionResponse.segments(); for (SegmentDetection detectedSegment : detectedSegments) { String type = detectedSegment.type().toString(); if (type.contains(SegmentType.TECHNICAL_CUE.toString())) { System.out.println("Technical Cue"); TechnicalCueSegment segmentCue = detectedSegment.technicalCueSegment(); System.out.println("\tType: " + segmentCue.type()); System.out.println("\tConfidence: " + segmentCue.confidence().toString()); } if (type.contains(SegmentType.SHOT.toString())) { System.out.println("Shot"); ShotSegment segmentShot = detectedSegment.shotSegment(); System.out.println("\tIndex " + segmentShot.index()); System.out.println("\tConfidence: " + segmentShot.confidence().toString()); } long seconds = detectedSegment.durationMillis(); System.out.println("\tDuration : " + seconds + " milliseconds"); System.out.println("\tStart time code: " + detectedSegment.startTimecodeSMPTE()); System.out.println("\tEnd time code: " + detectedSegment.endTimecodeSMPTE()); System.out.println("\tDuration time code: " + detectedSegment.durationSMPTE()); System.out.println(); } } while (segDetectionResponse != null && segDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
Amazon S3 バケットに保存されたビデオに保存されたビデオ内のテキストを検出します。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.TextDetectionResult; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectText { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startTextLabels(rekClient, channel, bucket, video); getTextResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startTextLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartTextDetectionRequest labelDetectionRequest = StartTextDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .build(); StartTextDetectionResponse labelDetectionResponse = rekClient.startTextDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getTextResults(RekognitionClient rekClient) { try { String paginationToken = null; GetTextDetectionResponse textDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (textDetectionResponse != null) paginationToken = textDetectionResponse.nextToken(); GetTextDetectionRequest recognitionRequest = GetTextDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { textDetectionResponse = rekClient.getTextDetection(recognitionRequest); status = textDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = textDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<TextDetectionResult> labels = textDetectionResponse.textDetections(); for (TextDetectionResult detectedText : labels) { System.out.println("Confidence: " + detectedText.textDetection().confidence().toString()); System.out.println("Id : " + detectedText.textDetection().id()); System.out.println("Parent Id: " + detectedText.textDetection().parentId()); System.out.println("Type: " + detectedText.textDetection().type()); System.out.println("Text: " + detectedText.textDetection().detectedText()); System.out.println(); } } while (textDetectionResponse != null && textDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
Amazon S3 バケットに保存されたビデオに保存されたビデオ内の人物を検出します。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.PersonDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoPersonDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startPersonLabels(rekClient, channel, bucket, video); getPersonDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startPersonLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartPersonTrackingRequest personTrackingRequest = StartPersonTrackingRequest.builder() .jobTag("DetectingLabels") .video(vidOb) .notificationChannel(channel) .build(); StartPersonTrackingResponse labelDetectionResponse = rekClient.startPersonTracking(personTrackingRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getPersonDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetPersonTrackingResponse personTrackingResult = null; boolean finished = false; String status; int yy = 0; do { if (personTrackingResult != null) paginationToken = personTrackingResult.nextToken(); GetPersonTrackingRequest recognitionRequest = GetPersonTrackingRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { personTrackingResult = rekClient.getPersonTracking(recognitionRequest); status = personTrackingResult.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = personTrackingResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<PersonDetection> detectedPersons = personTrackingResult.persons(); for (PersonDetection detectedPerson : detectedPersons) { long seconds = detectedPerson.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); System.out.println("Person Identifier: " + detectedPerson.person().index()); System.out.println(); } } while (personTrackingResult != null && personTrackingResult.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
API の詳細については、AWS SDK for Java 2.x API リファレンスの以下のトピックを参照してください。
-
次のコード例は、Amazon Rekognition を使用して画像内のカテゴリ別にオブジェクトを検出するアプリケーションを構築する方法を示しています。
- Java 2.x のSDK
-
Amazon Rekognition Java API を使用してAmazon Rekognition を使用して Amazon Simple Storage Service (Amazon S3) バケットにあるイメージ内のオブジェクトをカテゴリ別に識別するアプリケーションを作成する方法を示します。アプリは、Amazon Simple Email Service (Amazon SES) を使用して、結果を含む E メール通知を管理者に送信します。
完全なソースコードとセットアップと実行の手順については、GitHub
の詳細な例を参照してください。 この例で使用されているサービス
Amazon Rekognition
Amazon S3
Amazon SES
次のコード例は、Amazon Rekognition を使用してビデオ内のユーザーとオブジェクトを検出する方法を示しています。
- Java 2.x のSDK
-
Amazon Rekognition Java API を使用して、Amazon Simple Storage Service (Amazon S3) バケットにあるビデオの顔やオブジェクトを検出するアプリケーションを作成する方法を示します。アプリは、Amazon Simple Email Service (Amazon SES) を使用して、結果を含む E メール通知を管理者に送信します。
完全なソースコードとセットアップと実行の手順については、GitHub
の詳細な例を参照してください。 この例で使用されているサービス
Amazon Rekognition
Amazon S3
Amazon SES