Comparing faces in images
With Rekognition you can compare faces between two images using the CompareFaces operation. This feature is useful for applications like
identity verification or photo matching.
CompareFaces compares a face in the source image
with each face in the target image. Images are passed
to CompareFaces as either:
Face Detection vs Face Comparison
Face comparison is different from face detection. Face detection (which uses
DetectFaces) only identifies the presence and location of faces in an image or video. In
contrast, face comparison involves comparing a detected face in a source image to faces
in a target image to find matches.
Similarity thresholds
Use the similarityThreshold
parameter to define the minimum confidence
level for matches to be included in the response. By default, only faces with a
similarity score of greater than or equal to 80% are returned in the response.
CompareFaces
uses machine learning algorithms, which are
probabilistic. A false negative is an incorrect prediction that a face in the target
image has a low similarity confidence score when compared to the face in the source
image. To reduce the probability of false negatives, we recommend that you compare
the target image against multiple source images. If you plan to use
CompareFaces
to make a decision that impacts an individual's
rights, privacy, or access to services, we recommend that you pass the result to a
human for review and further validation before taking action.
The following code examples demonstrate how to use the CompareFaces operations for
various AWS SDKs. In the AWS CLI example, you upload two JPEG images to your Amazon S3 bucket
and specify the object key name. In the other examples, you load two files from the
local file system and input them as image byte arrays.
To compare faces
-
If you haven't already:
-
Create or update a user with AmazonRekognitionFullAccess
and AmazonS3ReadOnlyAccess
(AWS CLI example only)
permissions. For more information, see Step 1: Set up an AWS account and create a
User.
-
Install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 2: Set up the AWS CLI and AWS SDKs.
-
Use the following example code to call the CompareFaces
operation.
- Java
-
This example displays information about matching faces in source
and target images that are loaded from the local file system.
Replace the values of sourceImage
and
targetImage
with the path and file name of the
source and target images.
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
package aws.example.rekognition.image;
import com.amazonaws.services.rekognition.AmazonRekognition;
import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder;
import com.amazonaws.services.rekognition.model.Image;
import com.amazonaws.services.rekognition.model.BoundingBox;
import com.amazonaws.services.rekognition.model.CompareFacesMatch;
import com.amazonaws.services.rekognition.model.CompareFacesRequest;
import com.amazonaws.services.rekognition.model.CompareFacesResult;
import com.amazonaws.services.rekognition.model.ComparedFace;
import java.util.List;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.nio.ByteBuffer;
import com.amazonaws.util.IOUtils;
public class CompareFaces {
public static void main(String[] args) throws Exception{
Float similarityThreshold = 70F;
String sourceImage = "source.jpg";
String targetImage = "target.jpg";
ByteBuffer sourceImageBytes=null;
ByteBuffer targetImageBytes=null;
AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient();
//Load source and target images and create input parameters
try (InputStream inputStream = new FileInputStream(new File(sourceImage))) {
sourceImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
catch(Exception e)
{
System.out.println("Failed to load source image " + sourceImage);
System.exit(1);
}
try (InputStream inputStream = new FileInputStream(new File(targetImage))) {
targetImageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));
}
catch(Exception e)
{
System.out.println("Failed to load target images: " + targetImage);
System.exit(1);
}
Image source=new Image()
.withBytes(sourceImageBytes);
Image target=new Image()
.withBytes(targetImageBytes);
CompareFacesRequest request = new CompareFacesRequest()
.withSourceImage(source)
.withTargetImage(target)
.withSimilarityThreshold(similarityThreshold);
// Call operation
CompareFacesResult compareFacesResult=rekognitionClient.compareFaces(request);
// Display results
List <CompareFacesMatch> faceDetails = compareFacesResult.getFaceMatches();
for (CompareFacesMatch match: faceDetails){
ComparedFace face= match.getFace();
BoundingBox position = face.getBoundingBox();
System.out.println("Face at " + position.getLeft().toString()
+ " " + position.getTop()
+ " matches with " + match.getSimilarity().toString()
+ "% confidence.");
}
List<ComparedFace> uncompared = compareFacesResult.getUnmatchedFaces();
System.out.println("There was " + uncompared.size()
+ " face(s) that did not match");
}
}
- Java V2
-
This code is taken from the AWS Documentation SDK examples
GitHub repository. See the full example here.
import java.util.List;
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import software.amazon.awssdk.services.rekognition.model.Image;
import software.amazon.awssdk.services.rekognition.model.BoundingBox;
import software.amazon.awssdk.services.rekognition.model.CompareFacesMatch;
import software.amazon.awssdk.services.rekognition.model.CompareFacesRequest;
import software.amazon.awssdk.services.rekognition.model.CompareFacesResponse;
import software.amazon.awssdk.services.rekognition.model.ComparedFace;
import software.amazon.awssdk.core.SdkBytes;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
// snippet-end:[rekognition.java2.detect_faces.import]
/**
* Before running this Java V2 code example, set up your development environment, including your credentials.
*
* For more information, see the following documentation topic:
*
* https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
*/
public class CompareFaces {
public static void main(String[] args) {
final String usage = "\n" +
"Usage: " +
" <pathSource> <pathTarget>\n\n" +
"Where:\n" +
" pathSource - The path to the source image (for example, C:\\AWS\\pic1.png). \n " +
" pathTarget - The path to the target image (for example, C:\\AWS\\pic2.png). \n\n";
if (args.length != 2) {
System.out.println(usage);
System.exit(1);
}
Float similarityThreshold = 70F;
String sourceImage = args[0];
String targetImage = args[1];
Region region = Region.US_EAST_1;
RekognitionClient rekClient = RekognitionClient.builder()
.region(region)
.credentialsProvider(ProfileCredentialsProvider.create("profile-name"))
.build();
compareTwoFaces(rekClient, similarityThreshold, sourceImage, targetImage);
rekClient.close();
}
// snippet-start:[rekognition.java2.compare_faces.main]
public static void compareTwoFaces(RekognitionClient rekClient, Float similarityThreshold, String sourceImage, String targetImage) {
try {
InputStream sourceStream = new FileInputStream(sourceImage);
InputStream tarStream = new FileInputStream(targetImage);
SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);
SdkBytes targetBytes = SdkBytes.fromInputStream(tarStream);
// Create an Image object for the source image.
Image souImage = Image.builder()
.bytes(sourceBytes)
.build();
Image tarImage = Image.builder()
.bytes(targetBytes)
.build();
CompareFacesRequest facesRequest = CompareFacesRequest.builder()
.sourceImage(souImage)
.targetImage(tarImage)
.similarityThreshold(similarityThreshold)
.build();
// Compare the two images.
CompareFacesResponse compareFacesResult = rekClient.compareFaces(facesRequest);
List<CompareFacesMatch> faceDetails = compareFacesResult.faceMatches();
for (CompareFacesMatch match: faceDetails){
ComparedFace face= match.face();
BoundingBox position = face.boundingBox();
System.out.println("Face at " + position.left().toString()
+ " " + position.top()
+ " matches with " + face.confidence().toString()
+ "% confidence.");
}
List<ComparedFace> uncompared = compareFacesResult.unmatchedFaces();
System.out.println("There was " + uncompared.size() + " face(s) that did not match");
System.out.println("Source image rotation: " + compareFacesResult.sourceImageOrientationCorrection());
System.out.println("target image rotation: " + compareFacesResult.targetImageOrientationCorrection());
} catch(RekognitionException | FileNotFoundException e) {
System.out.println("Failed to load source image " + sourceImage);
System.exit(1);
}
}
// snippet-end:[rekognition.java2.compare_faces.main]
}
- AWS CLI
-
This example displays the JSON output from the
compare-faces
AWS CLI operation.
Replace bucket-name
with the name of the Amazon S3 bucket
that contains the source and target images. Replace
source.jpg
and target.jpg
with the
file names for the source and target images.
aws rekognition compare-faces --target-image \
"{"S3Object":{"Bucket":"bucket-name","Name":"image-name"}}" \
--source-image "{"S3Object":{"Bucket":"bucket-name","Name":"image-name"}}"
--profile profile-name
If you are accessing the CLI on a Windows device, use double
quotes instead of single quotes and escape the inner double quotes
by backslash (i.e. \) to address any parser errors you may
encounter. For an example, see the following:
aws rekognition compare-faces --target-image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" \
--source-image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" --profile profile-name
- Python
-
This example displays information about matching faces in source
and target images that are loaded from the local file system.
Replace the values of source_file
and
target_file
with the path and file name of the
source and target images. Replace the value of
profile_name
in the line that creates the Rekognition
session with the name of your developer profile.
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
import boto3
def compare_faces(sourceFile, targetFile):
session = boto3.Session(profile_name='profile-name')
client = session.client('rekognition')
imageSource = open(sourceFile, 'rb')
imageTarget = open(targetFile, 'rb')
response = client.compare_faces(SimilarityThreshold=80,
SourceImage={'Bytes': imageSource.read()},
TargetImage={'Bytes': imageTarget.read()})
for faceMatch in response['FaceMatches']:
position = faceMatch['Face']['BoundingBox']
similarity = str(faceMatch['Similarity'])
print('The face at ' +
str(position['Left']) + ' ' +
str(position['Top']) +
' matches with ' + similarity + '% confidence')
imageSource.close()
imageTarget.close()
return len(response['FaceMatches'])
def main():
source_file = 'source-file-name'
target_file = 'target-file-name'
face_matches = compare_faces(source_file, target_file)
print("Face matches: " + str(face_matches))
if __name__ == "__main__":
main()
- .NET
-
This example displays information about matching faces in source
and target images that are loaded from the local file system.
Replace the values of sourceImage
and
targetImage
with the path and file name of the
source and target images.
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.)
using System;
using System.IO;
using Amazon.Rekognition;
using Amazon.Rekognition.Model;
public class CompareFaces
{
public static void Example()
{
float similarityThreshold = 70F;
String sourceImage = "source.jpg";
String targetImage = "target.jpg";
AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient();
Amazon.Rekognition.Model.Image imageSource = new Amazon.Rekognition.Model.Image();
try
{
using (FileStream fs = new FileStream(sourceImage, FileMode.Open, FileAccess.Read))
{
byte[] data = new byte[fs.Length];
fs.Read(data, 0, (int)fs.Length);
imageSource.Bytes = new MemoryStream(data);
}
}
catch (Exception)
{
Console.WriteLine("Failed to load source image: " + sourceImage);
return;
}
Amazon.Rekognition.Model.Image imageTarget = new Amazon.Rekognition.Model.Image();
try
{
using (FileStream fs = new FileStream(targetImage, FileMode.Open, FileAccess.Read))
{
byte[] data = new byte[fs.Length];
data = new byte[fs.Length];
fs.Read(data, 0, (int)fs.Length);
imageTarget.Bytes = new MemoryStream(data);
}
}
catch (Exception)
{
Console.WriteLine("Failed to load target image: " + targetImage);
return;
}
CompareFacesRequest compareFacesRequest = new CompareFacesRequest()
{
SourceImage = imageSource,
TargetImage = imageTarget,
SimilarityThreshold = similarityThreshold
};
// Call operation
CompareFacesResponse compareFacesResponse = rekognitionClient.CompareFaces(compareFacesRequest);
// Display results
foreach(CompareFacesMatch match in compareFacesResponse.FaceMatches)
{
ComparedFace face = match.Face;
BoundingBox position = face.BoundingBox;
Console.WriteLine("Face at " + position.Left
+ " " + position.Top
+ " matches with " + match.Similarity
+ "% confidence.");
}
Console.WriteLine("There was " + compareFacesResponse.UnmatchedFaces.Count + " face(s) that did not match");
}
}
- Ruby
-
This example displays information about matching faces in source
and target images that are loaded from the local file system.
Replace the values of photo_source
and
photo_target
with the path and file name of the
source and target images.
# Add to your Gemfile
# gem 'aws-sdk-rekognition'
require 'aws-sdk-rekognition'
credentials = Aws::Credentials.new(
ENV['AWS_ACCESS_KEY_ID'],
ENV['AWS_SECRET_ACCESS_KEY']
)
bucket = 'bucket' # the bucketname without s3://
photo_source = 'source.jpg'
photo_target = 'target.jpg'
client = Aws::Rekognition::Client.new credentials: credentials
attrs = {
source_image: {
s3_object: {
bucket: bucket,
name: photo_source
},
},
target_image: {
s3_object: {
bucket: bucket,
name: photo_target
},
},
similarity_threshold: 70
}
response = client.compare_faces attrs
response.face_matches.each do |face_match|
position = face_match.face.bounding_box
similarity = face_match.similarity
puts "The face at: #{position.left}, #{position.top} matches with #{similarity} % confidence"
end
- Node.js
-
This example displays information about matching faces in source
and target images that are loaded from the local file system.
Replace the values of photo_source
and
photo_target
with the path and file name of the
source and target images. Replace the value of
profile_name
in the line that creates the Rekognition
session with the name of your developer profile.
// Load the SDK
var AWS = require('aws-sdk');
const bucket = 'bucket-name' // the bucket name without s3://
const photo_source = 'photo-source-name' // path and the name of file
const photo_target = 'photo-target-name'
var credentials = new AWS.SharedIniFileCredentials({profile: 'profile-name'});
AWS.config.credentials = credentials;
AWS.config.update({region:'region-name'});
const client = new AWS.Rekognition();
const params = {
SourceImage: {
S3Object: {
Bucket: bucket,
Name: photo_source
},
},
TargetImage: {
S3Object: {
Bucket: bucket,
Name: photo_target
},
},
SimilarityThreshold: 70
}
client.compareFaces(params, function(err, response) {
if (err) {
console.log(err, err.stack); // an error occurred
} else {
response.FaceMatches.forEach(data => {
let position = data.Face.BoundingBox
let similarity = data.Similarity
console.log(`The face at: ${position.Left}, ${position.Top} matches with ${similarity} % confidence`)
}) // for response.faceDetails
} // if
});
CompareFaces operation request
The input to CompareFaces
is an image. In this example, the source
and target images are loaded from the local file system. The
SimilarityThreshold
input parameter specifies the minimum
confidence that compared faces must match to be included in the response. For more
information, see Working with images.
{
"SourceImage": {
"Bytes": "/9j/4AAQSk2Q==..."
},
"TargetImage": {
"Bytes": "/9j/4O1Q==..."
},
"SimilarityThreshold": 70
}
CompareFaces operation response
The response includes:
-
An array of face matches: A list of matched faces with similarity scores
and metadata for each matching face. If multiple faces match, the
faceMatches
array includes all of the face matches.
-
Face match details: Each matched face also provides a bounding box,
confidence value, landmark locations, and similarity score.
-
A list of unmatched faces: The response also includes faces from the
target image that didn’t match the source image face. Includes a bounding
box for each unmatched face.
-
Source face information: Includes information about the face from the
source image that was used for comparison, including the bounding box and
confidence value.
The example shows that one face match was found in the target image. For that face
match, it provides a bounding box and a confidence value (the level of confidence
that Amazon Rekognition has that the bounding box contains a face). The similarity score of
99.99 indicates how similar the faces are. The example also shows one face that
Amazon Rekognition found in the target image that didn't match the face that was analyzed in
the source image.
{
"FaceMatches": [{
"Face": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185
},
"Confidence": 99.98751068115234,
"Pose": {
"Yaw": -82.36799621582031,
"Roll": -62.13221740722656,
"Pitch": 0.8652129173278809
},
"Quality": {
"Sharpness": 99.99880981445312,
"Brightness": 54.49755096435547
},
"Landmarks": [{
"Y": 0.2996366024017334,
"X": 0.41685718297958374,
"Type": "eyeLeft"
},
{
"Y": 0.2658946216106415,
"X": 0.4414493441581726,
"Type": "eyeRight"
},
{
"Y": 0.3465650677680969,
"X": 0.48636093735694885,
"Type": "nose"
},
{
"Y": 0.30935320258140564,
"X": 0.6251809000968933,
"Type": "mouthLeft"
},
{
"Y": 0.26942989230155945,
"X": 0.6454493403434753,
"Type": "mouthRight"
}
]
},
"Similarity": 100.0
}],
"SourceImageOrientationCorrection": "ROTATE_90",
"TargetImageOrientationCorrection": "ROTATE_90",
"UnmatchedFaces": [{
"BoundingBox": {
"Width": 0.4890109896659851,
"Top": 0.6566604375839233,
"Left": 0.10989011079072952,
"Height": 0.278298944234848
},
"Confidence": 99.99992370605469,
"Pose": {
"Yaw": 51.51519012451172,
"Roll": -110.32493591308594,
"Pitch": -2.322134017944336
},
"Quality": {
"Sharpness": 99.99671173095703,
"Brightness": 57.23163986206055
},
"Landmarks": [{
"Y": 0.8288310766220093,
"X": 0.3133862614631653,
"Type": "eyeLeft"
},
{
"Y": 0.7632885575294495,
"X": 0.28091415762901306,
"Type": "eyeRight"
},
{
"Y": 0.7417283654212952,
"X": 0.3631140887737274,
"Type": "nose"
},
{
"Y": 0.8081989884376526,
"X": 0.48565614223480225,
"Type": "mouthLeft"
},
{
"Y": 0.7548204660415649,
"X": 0.46090251207351685,
"Type": "mouthRight"
}
]
}],
"SourceImageFace": {
"BoundingBox": {
"Width": 0.5521978139877319,
"Top": 0.1203877404332161,
"Left": 0.23626373708248138,
"Height": 0.3126954436302185
},
"Confidence": 99.98751068115234
}
}