Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

Questions - Healthcare Industry Lens
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

Questions

HCL_OE1. Does your organization use master data management processes to unambiguously identify patients or individuals and link clinical concepts and measures to standard healthcare vocabularies (such as SNOMED, ICD, CPT, or NDC)?

Datasets should be cleansed, tracked, and versioned to maintain their quality. Use a central Data Catalog to register and discover these datasets. Automate master data management processes to reduce burden and improve adoption. Label sensitive datasets with authorization enforced. Track licenses for applicable datasets. Standard healthcare ontologies are preferred over proprietary to promote reuse and data sharing.

HCL_OE2. Does your organization have a process for updating the vocabularies used in master data management processes?

Various public and private organizations maintain healthcare ontologies. The frequency of publication and methods of distribution vary widely. New concepts are added to these ontologies over time and others are deprecated. Automated processes for keeping the content updated reduce manual error-prone efforts and improve data quality. The publication of new content may be used to trigger this update process; otherwise, set up an automated schedule aligned with the content owner.

HCL_OE3. Are open data formats being used for health data?

Health data lakes should store a copy of data in open standard formats (such as HL7, DICOM, standard genomic files like Binary Alignment Map (BAM), Compressed Reference-oriented Alignment Map (CRAM) and (g)VCF, XML, CSV, JSON, Parquet, or JPEG). Derivative copies of data may use non-standard formats to support downstream analytics. Storing health data in open formats expands the software that can be used to process the data, and may decrease the data transformations needed for interoperability.

HCL_SEC13. Does your organization employ role-based and attribute-based access control, as well as fine-grained secure data access at the table, column, or row level to ensure least privilege access?

Healthcare data access should follow least privilege. Access to the data should be granted to only those individuals who need it. Maintaining this access is greatly simplified using role-based and attribute-based mechanisms built on a common identity provider. Likewise, revoke access when no longer needed. Control access to individual datasets, but also verify that the user’s ability to combine datasets does not expose unintended risks.

HCL_SEC14. Are comprehensive audit logs capturing all data access (create, read, update, and delete) and show compliance with centrally defined policies?

Audit logs for access to all protected information must be maintained in a central immutable data store. Lock down permissions to audit logs. The logs must be maintained in accordance with your regulatory compliance. The logs can be migrated to lower-cost storage tiers automatically over time to reduce costs.

HCL_SEC15. Is sensitive data (for example, PII or health data) being deidentified or redacted when possible?

Many healthcare analytics use cases don’t require personally identifiable information. By deidentifying or redacting data, storing and accessing data becomes less risky. Use irreversible de-identification mechanisms to scrub sensitive information if it’s not needed by downstream consumers of the data.

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.