쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

REPLACE_OUTLIERS - AWS Glue DataBrew
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

REPLACE_OUTLIERS

Updates the data point values that classify as outliers, based on the settings in the parameters.

Parameters
  • sourceColumn – Specifies the name of an existing numeric column that might contain outliers.

  • outlierStrategy – Specifies the approach to use in detecting outliers. Valid values include the following:

    • Z_SCORE – Identifies a value as an outlier when it deviates from the mean by more than the standard deviation threshold.

    • MODIFIED_Z_SCORE – Identifies a value as an outlier when it deviates from the median by more than the median absolute deviation threshold.

    • IQR – Identifies a values as an outlier when it falls beyond the first and last quartile of column data. The interquartile range (IQR) measures where the middle 50% of the data points are.

  • threshold – Specifies the threshold value to use when detecting outliers. The sourceColumn value is identified as an outlier if the score that's calculated with the outlierStrategy exceeds this number. The default is 3.

  • replaceType – Specifies the method to use when replacing outliers. Valid values include the following:

    • WINSORIZE_VALUES – Specifies using the minimum and maximum percentile to cap the values.

    • REPLACE_WITH_CUSTOM

    • REPLACE_WITH_EMPTY

    • REPLACE_WITH_NULL

    • REPLACE_WITH_MODE

    • REPLACE_WITH_AVERAGE

    • REPLACE_WITH_MEDIAN

    • REPLACE_WITH_SUM

    • REPLACE_WITH_MAX

  • modeType – Indicates the type of modal function to use when replaceType is REPLACE_WITH_MODE. Valid values include the following: MIN, MAX, and AVERAGE.

  • minValue – Indicates the minimum percentile value for the outlier range that is to be applied when trimValue is used. Valid range is 0–100.

  • maxValue – Indicates the maximum percentile value for the outlier range that is to be applied when trimValue is used. . Valid range is 0–100.

  • value – Specifies the value to insert when using REPLACE_WITH_CUSTOM.

  • trimValue – Specifies whether to remove all or some of the outliers. This Boolean value is set to TRUE when replaceType is REPLACE_WITH_NULL, REPLACE_WITH_MODE, or WINSORIZE_VALUES. It defaults to FALSE for all others.

    • FALSE – Removes all outliers

    • TRUE –Removes outliers that rank outside of the percentile cap threshold specified in minValue and maxValue.

The following examples display syntax for a single RecipeAction operation. A recipe contains at least one RecipeStep operation, and a recipe step contains at least one recipe action. A recipe action runs the data transform that you specify. A group of recipe actions run in sequential order to create the final dataset.

JSON

The following shows an example RecipeAction to use as member of an example RecipeStep for a DataBrew Recipe, using JSON syntax. For syntax examples showing a list of recipe actions, see Defining a recipe structure.

Example in JSON
{ "Action": { "Operation": "REPLACE_OUTLIERS", "Parameters": { "maxValue": "95", "minValue": "5", "modeType": "AVERAGE", "outlierStrategy": "Z_SCORE", "replaceType": "REPLACE_WITH_MODE", "sourceColumn": "name-of-existing-column", "threshold": "3", "trimValue": "TRUE" } } }

For more information on using this recipe action in an API operation, see CreateRecipe or UpdateRecipe. You can use these and other API operations in your own code.

YAML

The following shows an example RecipeAction to use as member of an example RecipeStep for a DataBrew Recipe, using YAML syntax. For syntax examples showing a list of recipe actions, see Defining a recipe structure.

Example in YAML
- Action: Operation: REMOVE_OUTLIERS Parameters: sourceColumn: name-of-existing-column outlierStrategy: Z_SCORE threshold: '3' replaceType: REPLACE_WITH_MODE modeType: AVERAGE minValue: '5' maxValue: '95' trimValue: 'TRUE'

For more information on using this recipe action in an API operation, see CreateRecipe or UpdateRecipe. You can use these and other API operations in your own code.

The following shows an example RecipeAction to use as member of an example RecipeStep for a DataBrew Recipe, using JSON syntax. For syntax examples showing a list of recipe actions, see Defining a recipe structure.

Example in JSON
{ "Action": { "Operation": "REPLACE_OUTLIERS", "Parameters": { "maxValue": "95", "minValue": "5", "modeType": "AVERAGE", "outlierStrategy": "Z_SCORE", "replaceType": "REPLACE_WITH_MODE", "sourceColumn": "name-of-existing-column", "threshold": "3", "trimValue": "TRUE" } } }

For more information on using this recipe action in an API operation, see CreateRecipe or UpdateRecipe. You can use these and other API operations in your own code.

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.