기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
Debugger 예제 노트북
SageMaker 디버거 예제 노트북
대부분의 예제는 Amazon , Amazon S3 및 EC2Amazon SageMaker Python을 포함한 SageMaker AI 에코시스템의 훈련 작업을 위해 설계되었으므로 SageMaker Studio 또는 SageMaker 노트북 인스턴스에서 예제 노트북을 실행하는 것이 좋습니다SDK. Amazon S3
예제 리포지토리를 SageMaker Studio에 복제하려면 Amazon SageMaker Studio Tour의 지침을 따릅니다.
SageMaker 노트북 인스턴스에서 예제를 찾으려면 SageMaker 노트북 인스턴스 예제 노트북의 지침을 따르세요.
중요
새 Debugger 기능을 사용하려면 SageMaker Python SDK 및 SMDebug
클라이언트 라이브러리를 업그레이드해야 합니다. iPython 커널, Jupyter Notebook 또는 JupyterLab 환경에서 다음 코드를 실행하여 라이브러리의 최신 버전을 설치하고 커널을 다시 시작합니다.
import sys import IPython !{sys.executable} -m pip install -U sagemaker smdebug IPython.Application.instance().kernel.do_shutdown(True)
훈련 작업을 프로파일링하기 위한 디버거 예제 노트북
다음 목록은 다양한 기계 학습 모델, 데이터세트 및 프레임워크에 대한 훈련 작업을 모니터링하고 프로파일링할 수 있는 Debugger의 적응성을 소개하는 Debugger 예제 노트북입니다.
노트북 제목 | 프레임워크 | 모델 | 데이터세트 | 설명 |
---|---|---|---|---|
TensorFlow |
Keras ResNet50 |
Cifar-10 |
이 노트북은 SageMaker Debugger에서 캡처한 프로파일링된 데이터에 대한 대화형 분석을 소개합니다. |
|
TensorFlow |
1차원 컨벌루션 신경망 |
IMDB 데이터 세트 |
긍정적 또는 부정적 감정으로 레이블이 지정된 영화 리뷰로 구성된 IMDB 데이터의 감정 분석을 CNN 위한 프로필 a TensorFlow 1-D입니다. 스Studio Debugger 인사이트 및 Debugger 프로파일링 보고서를 살펴봅니다. |
|
TensorFlow |
ResNet50 | Cifar-10 |
Debugger를 사용하여 다양한 분산 TensorFlow 훈련 설정으로 훈련 작업을 실행하고 시스템 리소스 사용률을 모니터링하며 모델 성능을 프로파일링합니다. |
|
PyTorch |
ResNet50 |
Cifar-10 |
다양한 분산 PyTorch 훈련 설정으로 훈련 작업을 실행하고, 시스템 리소스 사용률을 모니터링하고, Debugger를 사용하여 모델 성능을 프로파일링합니다. |
모델 매개변수 분석을 위한 디버거 예제 노트북
다음 목록은 다양한 기계 학습 모델, 데이터세트 및 프레임워크에 대한 디버그 훈련 작업에 대한 디버거의 적응성을 소개하는 디버거 예제 노트북입니다.
노트북 제목 | 프레임워크 | 모델 | 데이터세트 | 설명 |
---|---|---|---|---|
TensorFlow |
컨볼루션 신경망 |
MNIST |
Amazon SageMaker Debugger 기본 제공 규칙을 사용하여 모델을 디버깅합니다 TensorFlow. |
|
TensorFlow |
ResNet50 |
Cifar-10 |
Tensorflow 2.1 프레임워크를 사용하여 모델을 디버깅하려면 Amazon SageMaker Debugger 후크 구성 및 기본 제공 규칙을 사용합니다. |
|
MXNet |
글루온 컨벌루션 신경망 |
패션 MNIST |
훈련 작업을 실행하고이 작업의 모든 텐서를 저장하도록 SageMaker Debugger를 구성한 다음 해당 텐서를 노트북에 시각화합니다. |
|
MXNet |
글루온 컨벌루션 신경망 |
패션 MNIST |
Debugger가 스팟 인스턴스의 훈련 작업에서 텐서 데이터를 수집하는 방법과 Debugger의 기본 제공 규칙을 관리형 스팟 훈련과 함께 사용하는 방법을 알아봅니다. |
|
Amazon SageMaker Debugger를 사용하여 개인의 소득을 예측하는 XGBoost 모델을 설명합니다. |
XGBoost |
XGBoost 회귀 |
Debugger 후크 및 내장 규칙을 사용하여 손실 값, 기능 및 SHAP 값과 같은 XGBoost 회귀 모델에서 텐서 데이터를 수집하고 시각화하는 방법을 알아봅니다. |
모델 매개변수 및 사용 사례에 대한 고급 시각화를 찾으려면 Debugger 고급 데모 및 시각화에서 다음 주제를 참고하세요.