쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Object2Vec에 대한 인코더 임베딩

포커스 모드
Object2Vec에 대한 인코더 임베딩 - Amazon SageMaker AI

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.

다음 페이지에는 Amazon SageMaker AI Object2Vec 모델에서 인코더 임베딩 추론을 가져오기 위한 입력 요청 및 출력 응답 형식이 나열되어 있습니다.

GPU 최적화: 인코더 임베딩

임베딩은 단어 같은 개별 객체에서 실수 벡터로의 매핑을 뜻합니다.

GPU 메모리 희소성으로 인해 INFERENCE_PREFERRED_MODE 환경 변수를 지정하여 Object2Vec 추론을 위한 데이터 형식 또는 인코더 임베딩 추론 네트워크가 GPU에 로드되는지 여부를 최적화할 수 있습니다. 대부분의 추론이 인코더 임베딩에 사용되는 경우 INFERENCE_PREFERRED_MODE=embedding을 지정합니다. 다음은 4개의 p3.2xlarge 인스턴스를 사용하는 인코더 임베딩 추론에 최적화된 배치 변환의 예제입니다.

transformer = o2v.transformer(instance_count=4, instance_type="ml.p2.xlarge", max_concurrent_transforms=2, max_payload=1, # 1MB strategy='MultiRecord', env={'INFERENCE_PREFERRED_MODE': 'embedding'}, # only useful with GPU output_path=output_s3_path)

입력: 인코더 임베딩

Content-type: application/json; infer_max_seqlens=<FWD-LENGTH>,<BCK-LENGTH>

여기서 <FWD-LENGTH> 및 <BCK-LENGTH>는 [1,5000] 범위의 정수이며 순방향 및 역방향 인코더의 최대 시퀀스 길이를 정의합니다.

{ "instances" : [ {"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4]}, {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4]}, {"in0": [774, 14, 21, 206]} ] }

Content-type: application/jsonlines; infer_max_seqlens=<FWD-LENGTH>,<BCK-LENGTH>

여기서 <FWD-LENGTH> 및 <BCK-LENGTH>는 [1,5000] 범위의 정수이며 순방향 및 역방향 인코더의 최대 시퀀스 길이를 정의합니다.

{"in0": [6, 17, 606, 19, 53, 67, 52, 12, 5, 10, 15, 10178, 7, 33, 652, 80, 15, 69, 821, 4]} {"in0": [22, 1016, 32, 13, 25, 11, 5, 64, 573, 45, 5, 80, 15, 67, 21, 7, 9, 107, 4]} {"in0": [774, 14, 21, 206]}

이러한 형식 둘 다에서는 “in0” 또는 “in1.” 중 한 가지 입력 형식만 지정합니다. 그러면 추론 서비스에서 해당하는 인코더를 호출해 각 인스턴스에 대한 임베딩을 호출합니다.

출력: 인코더 임베딩

Content-type: application/json

{ "predictions": [ {"embeddings":[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]}, {"embeddings":[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]} ] }

Content-type: application/jsonlines

{"embeddings":[0.057368703186511,0.030703511089086,0.099890425801277,0.063688032329082,0.026327300816774,0.003637571120634,0.021305780857801,0.004316598642617,0.0,0.003397724591195,0.0,0.000378780066967,0.0,0.0,0.0,0.007419463712722]} {"embeddings":[0.150190666317939,0.05145975202322,0.098204270005226,0.064249359071254,0.056249320507049,0.01513972133398,0.047553978860378,0.0,0.0,0.011533712036907,0.011472506448626,0.010696629062294,0.0,0.0,0.0,0.008508535102009]}

추론 서비스에서 출력한 임베딩의 벡터 길이는 훈련 시 지정한 enc0_token_embedding_dim, enc1_token_embedding_dim 또는 enc_dim 하이퍼파라미터 중 하나와 동일합니다.

이 페이지에서

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.