기계 번역으로 제공되는 번역입니다. 제공된 번역과 원본 영어의 내용이 상충하는 경우에는 영어 버전이 우선합니다.
엔드포인트 및 리소스 삭제
요금 발생을 중지하려면 엔드포인트를 삭제하십시오.
엔드포인트 삭제
콘솔을 사용하여 프로그래밍 방식으로 또는 AWS SDK for Python (Boto3)콘솔을 AWS CLI사용하여 대화형 방식으로 엔드포인트를 삭제합니다. SageMaker
SageMaker 엔드포인트 생성 시 배포된 모든 리소스를 확보합니다. 엔드포인트를 삭제해도 엔드포인트 구성이나 SageMaker 모델은 삭제되지 않습니다. 엔드포인트 구성 엔드포인트 구성 삭제 및 SageMaker 모델을 삭제하는 방법에 모델 삭제 대한 자세한 내용은 및 를 참조하십시오.
- AWS SDK for Python (Boto3)
-
DeleteEndpoint
API를 사용하여 엔드포인트를 삭제하십시오.EndpointName
필드의 경우, 엔드포인트 이름을 지정하십시오.import boto3 # Specify your AWS Region aws_region=
'<aws_region>'
# Specify the name of your endpoint endpoint_name='<endpoint_name>'
# Create a low-level SageMaker service client. sagemaker_client = boto3.client('sagemaker', region_name=aws_region) # Delete endpoint sagemaker_client.delete_endpoint(EndpointName=endpoint_name) - AWS CLI
-
엔드포인트를 삭제하려면
delete-endpoint
명령을 사용합니다.endpoint-name
플래그의 경우, 엔드포인트 이름을 지정하십시오.aws sagemaker delete-endpoint --endpoint-name
<endpoint-name>
- SageMaker Console
-
SageMaker 콘솔과 대화식으로 엔드포인트를 삭제하십시오.
-
SageMaker 콘솔의 https://console.aws.amazon.com/sagemaker/
탐색 메뉴에서 추론을 선택합니다. -
드롭다운 메뉴에서 엔드포인트를 선택합니다. AWS 계정에서 생성된 엔드포인트 목록은 이름, Amazon Resource Name (ARN), 생성 시간, 상태, 엔드포인트가 마지막으로 업데이트된 시점의 타임스탬프별로 표시됩니다.
-
삭제할 엔드포인트를 선택합니다.
-
오른쪽 상단 모서리의 작업 드롭다운 버튼을 선택합니다.
-
삭제를 선택합니다.
-
엔드포인트 구성 삭제
콘솔을 사용하거나 를 사용하여 프로그래밍 방식으로 또는 콘솔을 사용하여 대화형 AWS SDK for Python (Boto3)방식으로 엔드포인트 구성을 삭제합니다. AWS CLI SageMaker 엔드포인트 구성을 삭제해도 이 구성을 사용하여 생성된 엔드포인트는 삭제되지 않습니다. 엔드포인트 삭제 방법에 대한 자세한 내용은 엔드포인트 삭제 섹션을 참조하십시오.
활성 상태인 엔드포인트에서 사용 중이거나 엔드포인트가 업데이트 또는 생성 중인 동안에는 엔드포인트 구성을 삭제하지 마십시오. 활성 상태이거나 생성 또는 업데이트 중인 엔드포인트의 엔드포인트 구성을 삭제하면 엔드포인트가 사용하는 인스턴스 유형을 제대로 파악하지 못할 수 있습니다.
- AWS SDK for Python (Boto3)
-
DeleteEndpointConfig
API를 사용하여 엔드포인트를 삭제하십시오.EndpointConfigName
필드에 엔드포인트 구성 이름을 지정합니다.import boto3 # Specify your AWS Region aws_region=
'<aws_region>'
# Specify the name of your endpoint configuration endpoint_config_name='<endpoint_name>'
# Create a low-level SageMaker service client. sagemaker_client = boto3.client('sagemaker', region_name=aws_region) # Delete endpoint configuration sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)선택적으로
DescribeEndpointConfig
API를 사용하여 배포된 모델(프로덕션 변형)의 이름에 대한 정보(예: 모델 이름 및 배포된 모델과 관련된 엔드포인트 구성 이름)를 반환할 수 있습니다.EndpointConfigName
필드에 엔드포인트 이름을 지정하십시오.# Specify the name of your endpoint endpoint_name=
'<endpoint_name>'
# Create a low-level SageMaker service client. sagemaker_client = boto3.client('sagemaker', region_name=aws_region) # Store DescribeEndpointConfig response into a variable that we can index in the next step. response = sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_name) # Delete endpoint endpoint_config_name = response['ProductionVariants'][0]['EndpointConfigName'] # Delete endpoint configuration sagemaker_client.delete_endpoint_config(EndpointConfigName=endpoint_config_name)DescribeEndpointConfig
에서 반환된 다른 응답 요소에 대한 자세한 내용은 APIDescribeEndpointConfig
참조 안내서를 참조하십시오. SageMaker - AWS CLI
-
엔드포인트 구성을 삭제하려면
delete-endpoint-config
명령을 사용합니다.endpoint-config-name
플래그에 엔드포인트 구성 이름을 지정합니다.aws sagemaker delete-endpoint-config \ --endpoint-config-name
<endpoint-config-name>
선택적으로
describe-endpoint-config
명령을 를 사용하여 배포된 모델(프로덕션 변형)의 이름에 대한 정보(예: 모델 이름 및 배포된 모델과 관련된 엔드포인트 구성 이름)를 반환할 수 있습니다.endpoint-config-name
플래그에 엔드포인트 이름을 제공하십시오.aws sagemaker describe-endpoint-config --endpoint-config-name
<endpoint-config-name>
그러면 JSON 응답이 반환됩니다. 복사하여 붙여넣거나, JSON 파서를 사용하거나, JSON 파싱용으로 제작된 도구를 사용하여 해당 엔드포인트와 연결된 엔드포인트 구성 이름을 가져올 수 있습니다.
- SageMaker Console
-
SageMaker콘솔과 대화식으로 엔드포인트 구성을 삭제하십시오.
-
SageMaker 콘솔의 https://console.aws.amazon.com/sagemaker/
탐색 메뉴에서 추론을 선택합니다. -
드롭다운 메뉴에서 엔드포인트 구성을 선택합니다. AWS 계정에서 생성된 엔드포인트 구성 목록은 이름, Amazon 리소스 이름(ARN), 생성 시간별로 표시됩니다.
-
삭제할 엔드포인트 구성을 선택합니다.
-
오른쪽 상단 모서리의 작업 드롭다운 버튼을 선택합니다.
-
삭제를 선택합니다.
-
모델 삭제
콘솔을 사용하여 프로그래밍 방식으로 SageMaker 모델을 삭제하거나 콘솔을 사용하여 AWS SDK for Python (Boto3)대화형 방식으로 모델을 삭제합니다. AWS CLI SageMaker 모델을 삭제하면 에서 생성한 SageMaker 모델 항목만 삭제됩니다. SageMaker 모델 아티팩트, 추론 코드 또는 모델을 생성할 때 지정한 IAM 역할은 삭제하지 않습니다.
- AWS SDK for Python (Boto3)
-
DeleteModel
API를 사용하여 SageMaker 모델을 삭제하세요.ModelName
필드에 모델 이름을 지정하십시오.import boto3 # Specify your AWS Region aws_region=
'<aws_region>'
# Specify the name of your endpoint configuration model_name='<model_name>'
# Create a low-level SageMaker service client. sagemaker_client = boto3.client('sagemaker', region_name=aws_region) # Delete model sagemaker_client.delete_model(ModelName=model_name)선택적으로
DescribeEndpointConfig
API를 사용하여 배포된 모델(프로덕션 변형)의 이름에 대한 정보(예: 모델 이름 및 배포된 모델과 관련된 엔드포인트 구성 이름)를 반환할 수 있습니다.EndpointConfigName
필드에 엔드포인트 이름을 지정하십시오.# Specify the name of your endpoint endpoint_name=
'<endpoint_name>'
# Create a low-level SageMaker service client. sagemaker_client = boto3.client('sagemaker', region_name=aws_region) # Store DescribeEndpointConfig response into a variable that we can index in the next step. response = sagemaker_client.describe_endpoint_config(EndpointConfigName=endpoint_name) # Delete endpoint model_name = response['ProductionVariants'][0]['ModelName'] sagemaker_client.delete_model(ModelName=model_name)DescribeEndpointConfig
에서 반환된DescribeEndpointConfig
다른 응답 요소에 대한 자세한 내용은 SageMaker API 참조 안내서를 참조하십시오. - AWS CLI
-
delete-model
명령을 사용하여 SageMaker 모델을 삭제합니다.model-name
필드에 모델 이름을 지정하십시오.aws sagemaker delete-model \ --model-name
<model-name>
선택적으로
describe-endpoint-config
명령을 를 사용하여 배포된 모델(프로덕션 변형)의 이름에 대한 정보(예: 모델 이름 및 배포된 모델과 관련된 엔드포인트 구성 이름)를 반환할 수 있습니다.endpoint-config-name
플래그에 엔드포인트 이름을 제공하십시오.aws sagemaker describe-endpoint-config --endpoint-config-name
<endpoint-config-name>
그러면 JSON 응답이 반환됩니다. 복사하여 붙여넣거나, JSON 파서를 사용하거나, JSON 파싱용으로 제작된 도구를 사용하여 해당 엔드포인트와 연결된 모델의 이름을 가져올 수 있습니다.
- SageMaker Console
-
SageMaker 콘솔을 사용하여 대화형 방식으로 SageMaker 모델을 삭제합니다.
-
SageMaker 콘솔의 https://console.aws.amazon.com/sagemaker/
탐색 메뉴에서 추론을 선택합니다. -
드롭다운 메뉴에서 모델을 선택합니다. AWS 계정에서 생성된 모델 목록은 이름, Amazon 리소스 이름 (ARN), 생성 시간별로 표시됩니다.
-
삭제할 모델을 선택합니다.
-
오른쪽 상단 모서리의 작업 드롭다운 버튼을 선택합니다.
-
삭제를 선택합니다.
-