Parâmetros de entrada da função de DeepRacer recompensa da AWS - AWS DeepRacer

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Parâmetros de entrada da função de DeepRacer recompensa da AWS

A função de DeepRacer recompensa da AWS usa um objeto de dicionário como entrada.

def reward_function(params) : reward = ... return float(reward)

O objeto de dicionário params contém os seguintes pares de chave/valor:

{ "all_wheels_on_track": Boolean, # flag to indicate if the agent is on the track "x": float, # agent's x-coordinate in meters "y": float, # agent's y-coordinate in meters "closest_objects": [int, int], # zero-based indices of the two closest objects to the agent's current position of (x, y). "closest_waypoints": [int, int], # indices of the two nearest waypoints. "distance_from_center": float, # distance in meters from the track center "is_crashed": Boolean, # Boolean flag to indicate whether the agent has crashed. "is_left_of_center": Boolean, # Flag to indicate if the agent is on the left side to the track center or not. "is_offtrack": Boolean, # Boolean flag to indicate whether the agent has gone off track. "is_reversed": Boolean, # flag to indicate if the agent is driving clockwise (True) or counter clockwise (False). "heading": float, # agent's yaw in degrees "objects_distance": [float, ], # list of the objects' distances in meters between 0 and track_length in relation to the starting line. "objects_heading": [float, ], # list of the objects' headings in degrees between -180 and 180. "objects_left_of_center": [Boolean, ], # list of Boolean flags indicating whether elements' objects are left of the center (True) or not (False). "objects_location": [(float, float),], # list of object locations [(x,y), ...]. "objects_speed": [float, ], # list of the objects' speeds in meters per second. "progress": float, # percentage of track completed "speed": float, # agent's speed in meters per second (m/s) "steering_angle": float, # agent's steering angle in degrees "steps": int, # number steps completed "track_length": float, # track length in meters. "track_width": float, # width of the track "waypoints": [(float, float), ] # list of (x,y) as milestones along the track center }

Uma referência técnica mais detalhada dos parâmetros de entrada é a seguinte.

all_wheels_on_track

Tipo: Boolean

Intervalo: (True:False)

Um sinalizador Boolean para especificar se o agente está ou não fora da pista. Ele está fora da pista (False) se uma de suas rodas estiver fora das bordas da pista. Ele está na pista (True) se todas as rodas estiverem dentro das duas bordas da pista. A ilustração a seguir mostra que o agente está na pista.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS deall_wheels_on_track = True.

A ilustração a seguir mostra que o agente está fora da pista.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS deall_wheels_on_track = False.

Exemplo: Uma função de recompensa usando o parâmetro all_wheels_on_track

def reward_function(params): ############################################################################# ''' Example of using all_wheels_on_track and speed ''' # Read input variables all_wheels_on_track = params['all_wheels_on_track'] speed = params['speed'] # Set the speed threshold based your action space SPEED_THRESHOLD = 1.0 if not all_wheels_on_track: # Penalize if the car goes off track reward = 1e-3 elif speed < SPEED_THRESHOLD: # Penalize if the car goes too slow reward = 0.5 else: # High reward if the car stays on track and goes fast reward = 1.0 return float(reward)

closest_waypoints

Digite: [int, int]

Intervalo: [(0:Max-1),(1:Max-1)]

Os índices baseados em zero dos dois waypoint vizinhos mais próximos da posição atual do atendente de (x, y). A distância é medida pela distância euclidiana do centro do atendente. O primeiro elemento refere-se ao ponto de referência mais próximo atrás do atendente, e o segundo elemento refere-se ao ponto de referência mais próximo na frente do atendente. Max é o tamanho da lista de pontos de referência. Na ilustração mostrada em pontos de referência, os closest_waypoints seriam [16, 17].

Example (Exemplo): uma função de recompensa usando o parâmetro closest_waypoints.

A seguinte função de recompensa de exemplo demonstra como usar waypoints e closest_waypoints bem como heading para calcular recompensas imediatas.

A AWS DeepRacer oferece suporte às seguintes bibliotecas: math NumPy SciPy, random e Shapely. Para usar uma delas, adicione uma declaração de importação, import supported library, acima da definição da função, def function_name(parameters).

# Place import statement outside of function (supported libraries: math, random, numpy, scipy, and shapely) # Example imports of available libraries # # import math # import random # import numpy # import scipy # import shapely import math def reward_function(params): ############################################################################### ''' Example of using waypoints and heading to make the car point in the right direction ''' # Read input variables waypoints = params['waypoints'] closest_waypoints = params['closest_waypoints'] heading = params['heading'] # Initialize the reward with typical value reward = 1.0 # Calculate the direction of the center line based on the closest waypoints next_point = waypoints[closest_waypoints[1]] prev_point = waypoints[closest_waypoints[0]] # Calculate the direction in radius, arctan2(dy, dx), the result is (-pi, pi) in radians track_direction = math.atan2(next_point[1] - prev_point[1], next_point[0] - prev_point[0]) # Convert to degree track_direction = math.degrees(track_direction) # Calculate the difference between the track direction and the heading direction of the car direction_diff = abs(track_direction - heading) if direction_diff > 180: direction_diff = 360 - direction_diff # Penalize the reward if the difference is too large DIRECTION_THRESHOLD = 10.0 if direction_diff > DIRECTION_THRESHOLD: reward *= 0.5 return float(reward) ​

closest_objects

Digite: [int, int]

Intervalo: [(0:len(objects_location)-1), (0:len(objects_location)-1)]

Os índices baseados em zero dos dois objetos mais próximos da posição atual do atendente de (x, y). O primeiro índice refere-se ao objeto mais próximo atrás do veículo, e o segundo índice refere-se ao objeto mais próximo na frente do atendente. Se houver apenas um objeto, os dois índices serão 0.

distance_from_center

Digite: float

Intervalo: 0:~track_width/2

Deslocamento, em metros, entre o centro do agente e o centro da pista. O deslocamento máximo observável ocorre quando qualquer uma das rodas do atendente está fora de uma borda da pista e, dependendo da largura da borda da pista, pode ser ligeiramente menor ou maior que a metade da track_width.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS dedistance_from_center.

Exemplo: Uma função de recompensa usando o parâmetro distance_from_center

def reward_function(params): ################################################################################# ''' Example of using distance from the center ''' # Read input variable track_width = params['track_width'] distance_from_center = params['distance_from_center'] # Penalize if the car is too far away from the center marker_1 = 0.1 * track_width marker_2 = 0.5 * track_width if distance_from_center <= marker_1: reward = 1.0 elif distance_from_center <= marker_2: reward = 0.5 else: reward = 1e-3 # likely crashed/ close to off track return float(reward)

heading

Digite: float

Intervalo: -180:+180

A condução da direção, em graus, do agente em relação ao eixo x do sistema de coordenadas.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS deheading.

Exemplo: Uma função de recompensa usando o parâmetro heading

Para ter mais informações, consulte closest_waypoints.

is_crashed

Digite: Boolean

Intervalo: (True:False)

Um sinalizador booliano para indicar se o agente bateu em outro objeto (True) ou não (False), como um status de encerramento.

is_left_of_center

Digite: Boolean

Intervalo: [True : False]

Um sinalizador Boolean para indicar se o agente está no lado esquerdo em relação ao centro da pista (True) ou no lado direito (False).

is_offtrack

Digite: Boolean

Intervalo: (True:False)

Um sinalizador booliano para indicar se o agente tem o status fora da pista (Verdadeiro) ou não (Falso) como um status de encerramento.

is_reversed

Digite: Boolean

Intervalo: [True:False]

Um sinalizador booliano para indicar se o agente está dirigindo no sentido horário (Verdadeiro) ou no sentido anti-horário (Falso).

Ela é usada quando você habilita a mudança de condução para cada episódio.

objects_distance

Digite: [float, … ]

Intervalo: [(0:track_length), … ]

Uma lista das distâncias entre objetos no ambiente em relação à linha de largada. O io elemento mede a distância em metros entre o io objeto e a linha de largada ao longo da linha central da pista.

nota

abs | (var1) - (var2) | = a proximidade do carro em relação a um objeto, WHEN var1 = ["objects_distance"][index] e var2 = params["progress"]*params["track_length"]

Para obter um índice do objeto mais próximo na frente do veículo e o objeto mais próximo atrás do veículo, use o parâmetro “closest_objects”.

objects_heading

Digite: [float, … ]

Intervalo: [(-180:180), … ]

Lista das direções dos objetos em graus. O io elemento mede a direção do io objeto. Para objetos estacionários, ad direções são iguais a 0. Para um veículo bot, o valor do elemento correspondente é o ângulo da direção do veículo.

objects_left_of_center

Digite: [Boolean, … ]

Intervalo: [True|False, … ]

Lista de sinalizadores boolianos. O primeiro valor do elemento indica se o primeiro objeto está no lado esquerdo (Verdadeiro) ou direito (Falso) do centro da pista.

objects_location

Digite: [(x,y), … ]

Intervalo: [(0:N,0:N), … ]

Lista de todos os locais de objetos, cada local é uma tupla de (x, y).

O tamanho da lista é igual ao número de objetos na pista. Observe que os objetos podem ser os obstáculos estacionários, veículos bot em movimento.

objects_speed

Digite: [float, … ]

Intervalo: [(0:12.0), … ]

Lista de velocidades (metros por segundo) dos objetos na pista. Para objetos estacionários, suas velocidades são 0. Para um veículo bot, o valor é a velocidade definida no treinamento.

progresso

Digite: float

Intervalo: 0:100

Porcentagem da pista concluída.

Exemplo: Uma função de recompensa usando o parâmetro progress

Para mais informações, consulte etapas.

velocidade

Digite: float

Intervalo: 0.0:5.0

A velocidade observada do atendente, em metros por segundo (m/s).

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS despeed.

Exemplo: Uma função de recompensa usando o parâmetro speed

Para mais informações, consulte all_wheels_on_track.

steering_angle

Digite: float

Intervalo: -30:30

Ângulo da direção, em graus, das rodas dianteiras a partir da linha central do atendente. O sinal negativo (-) significa curva para a direita e o sinal positivo (+) significa curva para a esquerda. A linha central do agente não é necessariamente paralela à linha central da pista, conforme mostrado na ilustração a seguir.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS desteering_angle.

Exemplo: Uma função de recompensa usando o parâmetro steering_angle

def reward_function(params): ''' Example of using steering angle ''' # Read input variable abs_steering = abs(params['steering_angle']) # We don't care whether it is left or right steering # Initialize the reward with typical value reward = 1.0 # Penalize if car steer too much to prevent zigzag ABS_STEERING_THRESHOLD = 20.0 if abs_steering > ABS_STEERING_THRESHOLD: reward *= 0.8 return float(reward)

etapas

Digite: int

Intervalo: 0:Nstep

Número de etapas concluídas. Uma etapa corresponde a uma ação executada pelo agente seguindo a política atual.

Exemplo: Uma função de recompensa usando o parâmetro steps

def reward_function(params): ############################################################################# ''' Example of using steps and progress ''' # Read input variable steps = params['steps'] progress = params['progress'] # Total num of steps we want the car to finish the lap, it will vary depends on the track length TOTAL_NUM_STEPS = 300 # Initialize the reward with typical value reward = 1.0 # Give additional reward if the car pass every 100 steps faster than expected if (steps % 100) == 0 and progress > (steps / TOTAL_NUM_STEPS) * 100 : reward += 10.0 return float(reward)

track_length

Digite: float

Intervalo: [0:Lmax]

O comprimento da pista em metros. Lmax is track-dependent.

track_width

Digite: float

Intervalo: 0:Dtrack

Largura da pista em metros.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS detrack_width.

Exemplo: Uma função de recompensa usando o parâmetro track_width

def reward_function(params): ############################################################################# ''' Example of using track width ''' # Read input variable track_width = params['track_width'] distance_from_center = params['distance_from_center'] # Calculate the distance from each border distance_from_border = 0.5 * track_width - distance_from_center # Reward higher if the car stays inside the track borders if distance_from_border >= 0.05: reward = 1.0 else: reward = 1e-3 # Low reward if too close to the border or goes off the track return float(reward)

x, y

Digite: float

Intervalo: 0:N

Localização, em metros, do centro do agente ao longo dos eixos x e y do ambiente simulado da pista. A origem está no canto inferior esquerdo do ambiente simulado.

Imagem: Parâmetros de entrada da função de DeepRacer recompensa da AWS dex,y.

pontos de referência

Type (Tipo): list de [float, float]

Intervalo: [[xw,0,yw,0] … [xw,Max-1, yw,Max-1]]

Uma lista ordenada dos marcos Max dependentes da pista ao longo do centro da pista. Cada marco é descrito por uma coordenada de (xw,i, yw,i). Para um circuito, o primeiro e o último ponto de referência são os mesmos. Para uma pista reta ou que não seja um circuito, o primeiro e o último ponto de referência são diferentes.

Imagem: Parâmetro de entrada da função de DeepRacer recompensa da AWS dewaypoints.

Example (Exemplo) Uma função de recompensa usando o parâmetro waypoints

Para ter mais informações, consulte closest_waypoints.