As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Receita de personalização do usuário v2
A receita User-Personalization-v 2 (aws-user-personalization-v2) recomenda itens com os quais o usuário interagirá com base em suas preferências. Por exemplo, você pode usar User-Personalization-v 2 para gerar recomendações personalizadas de filmes para um aplicativo de streaming ou recomendações personalizadas de produtos para um aplicativo de varejo. Outros casos de uso incluem a geração de recomendações em tempo real para um site de notícias ou recomendações em lote para uma campanha de marketing personalizada.
User-Personalization-v2 pode treinar em até 5 milhões de itens de interações de itens e conjuntos de dados de itens. E gera recomendações mais relevantes com menor latência do queUser-Personalization.
Como o User-Personalization-v 2 recomenda os itens mais relevantes aos usuários com base em seus dados, ele recomenda com mais frequência itens existentes com dados de interações. Para garantir que as recomendações incluam novos itens, você pode usar uma promoção que inclua alguns itens com base na data e hora da criação. Para obter mais informações sobre promoções, consultePromovendo itens em recomendações em tempo real.
Essa receita usa uma arquitetura baseada em transformadores para treinar um modelo que aprende o contexto e rastreia relacionamentos e padrões em seus dados. Transformadores são um tipo de arquitetura de rede neural que transforma ou altera uma sequência de entrada em uma sequência de saída. Para o Amazon Personalize, a sequência de entrada é o histórico de interação do item do usuário em seus dados. A sequência de saída são suas recomendações personalizadas. Para obter mais informações sobre transformadores, consulte O que são transformadores em inteligência artificial
O User-Personalization-v2 usa um modelo de preços diferente de outras receitas. Para obter mais informações sobre preços, consulte os preços do Amazon Personalize.
Recursos da fórmula
O User-Personalization-v2 usa os seguintes recursos de receita do Amazon Personalize ao gerar recomendações de itens:
-
Personalização em tempo real — Com a personalização em tempo real, o Amazon Personalize atualiza e adapta as recomendações de itens de acordo com a evolução do interesse do usuário. Para obter mais informações, consulte Personalização em tempo real.
-
Exploração — Com a exploração, as recomendações incluem itens com menos dados de interações ou relevância para o usuário. Com User-Personalization-v 2, o Amazon Personalize gerencia a configuração de exploração para você. Para garantir que as recomendações incluam novos itens, você pode usar promoções para incluir novos itens com base na data e hora de criação. Para obter mais informações sobre promoções, consultePromovendo itens em recomendações em tempo real.
-
Atualizações automáticas — Com as atualizações automáticas, o Amazon Personalize atualiza automaticamente o modelo mais recente (versão da solução) a cada duas horas para considerar novos itens para recomendações. Para obter mais informações, consulte Atualizações automáticas.
-
Metadados com recomendações — Com a receita User-Personalization-v 2, se você tiver um conjunto de dados de itens com pelo menos uma coluna de metadados, as campanhas terão automaticamente a opção de incluir metadados do item nos resultados das recomendações. Você não precisa habilitar manualmente os metadados para sua campanha. É possível usar metadados para aprimorar as recomendações na interface de usuário, como adicionar gêneros de filmes a carrosséis. Para obter mais informações, consulte Metadados do item nas recomendações.
Conjuntos de dados obrigatórios e opcionais
Para usar o User-Personalization-v 2, você deve criar um conjunto de dados de interações de itens e importar no mínimo 1.000 interações de itens. O Amazon Personalize gera recomendações com base principalmente nos dados de interação do item. Para obter mais informações, consulte Dados de interações com itens. User-Personalization-v2 pode treinar em até 5 milhões de itens em interações de itens e conjuntos de dados de itens.
Com User-Personalization-v 2, o Amazon Personalize pode usar dados de interações de itens que incluem o seguinte:
-
Tipo de evento e dados de valor do evento — O Amazon Personalize usa dados de tipo de evento, como tipos de eventos de clique ou assista, para identificar a intenção e o interesse do usuário por meio de qualquer padrão de comportamento. Além disso, você pode usar os dados do tipo e do valor do evento para filtrar os registros antes do treinamento. Para obter mais informações, consulte Tipo de evento e dados de valor do evento.
nota
Com User-Personalization-v 2, seu custo de treinamento é baseado em seus dados de interações antes de filtrar por tipo ou valor do evento. Para obter mais informações sobre preços, consulte os preços do Amazon Personalize.
-
Metadados contextuais — Metadados contextuais são dados de interações que você coleta no ambiente do usuário no momento de um evento, como sua localização ou tipo de dispositivo. Para obter mais informações, consulte Metadados contextuais.
Os conjuntos de dados a seguir são opcionais e podem melhorar as recomendações:
-
Conjunto de dados de usuários — O Amazon Personalize pode usar dados em seu conjunto de dados de usuários para entender melhor seus usuários e seus interesses. Você também pode usar dados em um conjunto de dados de Usuários para filtrar recomendações. Para obter informações sobre os dados de usuários que podem ser importados, consulte Metadados do usuário.
-
Conjunto de dados de itens — O Amazon Personalize pode usar dados em seu conjunto de dados de itens para identificar conexões e padrões em seu comportamento. Isso ajuda o Amazon Personalize a entender os usuários e os respectivos interesses. Você também pode usar dados em um conjunto de dados de Itens para filtrar recomendações. Para obter informações sobre os dados de itens que podem ser importados, consulte Metadados do item.
Propriedades e hiperparâmetros
A receita User-Personalization-v 2 tem as seguintes propriedades:
-
Nome:
aws-user-personalization-v2
-
Receita Nome do recurso Amazon (ARN) —
arn:aws:personalize:::recipe/aws-user-personalization-v2
-
Algoritmo ARN —
arn:aws:personalize:::algorithm/aws-user-personalization-v2
Para obter mais informações, consulte Escolher uma fórmula.
A tabela a seguir descreve os hiperparâmetros da receita User-Personalization-v 2. Um hiperparâmetro é um parâmetro de algoritmo que pode ser ajustado para melhorar o desempenho do modelo. Os hiperparâmetros do algoritmo controlam o desempenho do modelo. O processo de escolher o melhor valor para um hiperparâmetro é chamado de otimização de hiperparâmetros ()HPO. Com User-Personalization-v 2, se você ativar o treinamento automático, o Amazon Personalize executa automaticamente a HPO cada 90 dias. Sem treinamento automático, nada HPO ocorre.
A tabela também fornece as seguintes informações para cada hiperparâmetro:
-
Intervalo: [limite inferior, limite superior]
-
Tipo de valor: inteiro, contínuo (float), categórico (booliano, lista, string)
Nome | Descrição |
---|---|
Hiperparâmetros de algoritmo | |
apply_recency_bias |
Determina se o modelo deve dar mais peso aos dados mais recentes de interações de itens em seu conjunto de dados de interações de itens. Os dados de interações mais recentes podem incluir mudanças repentinas nos padrões subjacentes dos eventos de interação. Para treinar um modelo que posiciona mais peso sobre eventos recentes, defina Valor padrão: Intervalo: Tipo de valor: booliano HPOajustável: Não |