Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

Use as regras integradas do depurador com suas configurações de parâmetros padrão

Modo de foco
Use as regras integradas do depurador com suas configurações de parâmetros padrão - SageMaker IA da Amazon

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Para especificar as regras integradas do depurador em seu estimador, você precisa configurar um objeto listado. O código de exemplo a seguir mostra a estrutura básica da listagem das regras integradas do depurador.

from sagemaker.debugger import Rule, rule_configs rules=[ Rule.sagemaker(rule_configs.built_in_rule_name_1()), Rule.sagemaker(rule_configs.built_in_rule_name_2()), ... Rule.sagemaker(rule_configs.built_in_rule_name_n()), ... # You can also append more profiler rules in the ProfilerRule.sagemaker(rule_configs.*()) format. ]

Para obter mais informações sobre valores de parâmetros padrão e descrições da regra integrada, consulte Lista de regras integradas do Depurador.

Para encontrar a referência da API SageMaker Debugger, consulte e. sagemaker.debugger.rule_configssagemaker.debugger.Rule

Por exemplo, para inspecionar o desempenho geral do treinamento e o progresso do seu modelo, crie um estimador de SageMaker IA com a seguinte configuração de regras incorporada.

from sagemaker.debugger import Rule, rule_configs rules=[ Rule.sagemaker(rule_configs.loss_not_decreasing()), Rule.sagemaker(rule_configs.overfit()), Rule.sagemaker(rule_configs.overtraining()), Rule.sagemaker(rule_configs.stalled_training_rule()) ]

Quando você inicia o trabalho de treinamento, o Debugger coleta dados de utilização de recursos do sistema a cada 500 milissegundos e os valores de perda e precisão a cada 500 etapas, por padrão. O depurador analisa a utilização de recursos para identificar se seu modelo está com problemas de gargalo. O loss_not_decreasing, overfit, overtraining e stalled_training_rule monitoram se seu modelo está otimizando a função de perda sem esses problemas de treinamento. Se as regras detectarem anomalias de treinamento, o status da avaliação da regra será alterado para IssueFound. Você pode configurar ações automatizadas, como notificar problemas de treinamento e interromper trabalhos de treinamento usando Amazon CloudWatch Events e. AWS Lambda Para obter mais informações, consulte Ação sobre as regras do Amazon SageMaker Debugger.

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.