Amazon Rekognition examples using SDK for Kotlin
The following code examples show you how to perform actions and implement common scenarios by using the AWS SDK for Kotlin with Amazon Rekognition.
Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.
Scenarios are code examples that show you how to accomplish specific tasks by calling multiple functions within a service or combined with other AWS services.
Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.
Actions
The following code example shows how to use CompareFaces
.
For more information, see Comparing faces in images.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun compareTwoFaces( similarityThresholdVal: Float, sourceImageVal: String, targetImageVal: String, ) { val sourceBytes = (File(sourceImageVal).readBytes()) val targetBytes = (File(targetImageVal).readBytes()) // Create an Image object for the source image. val souImage = Image { bytes = sourceBytes } val tarImage = Image { bytes = targetBytes } val facesRequest = CompareFacesRequest { sourceImage = souImage targetImage = tarImage similarityThreshold = similarityThresholdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val compareFacesResult = rekClient.compareFaces(facesRequest) val faceDetails = compareFacesResult.faceMatches if (faceDetails != null) { for (match: CompareFacesMatch in faceDetails) { val face = match.face val position = face?.boundingBox if (position != null) { println("Face at ${position.left} ${position.top} matches with ${face.confidence} % confidence.") } } } val uncompared = compareFacesResult.unmatchedFaces if (uncompared != null) { println("There was ${uncompared.size} face(s) that did not match") } println("Source image rotation: ${compareFacesResult.sourceImageOrientationCorrection}") println("target image rotation: ${compareFacesResult.targetImageOrientationCorrection}") } }
-
For API details, see CompareFaces
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use CreateCollection
.
For more information, see Creating a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun createMyCollection(collectionIdVal: String) { val request = CreateCollectionRequest { collectionId = collectionIdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.createCollection(request) println("Collection ARN is ${response.collectionArn}") println("Status code is ${response.statusCode}") } }
-
For API details, see CreateCollection
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DeleteCollection
.
For more information, see Deleting a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun deleteMyCollection(collectionIdVal: String) { val request = DeleteCollectionRequest { collectionId = collectionIdVal } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.deleteCollection(request) println("The collectionId status is ${response.statusCode}") } }
-
For API details, see DeleteCollection
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DeleteFaces
.
For more information, see Deleting faces from a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun deleteFacesCollection( collectionIdVal: String?, faceIdVal: String, ) { val deleteFacesRequest = DeleteFacesRequest { collectionId = collectionIdVal faceIds = listOf(faceIdVal) } RekognitionClient { region = "us-east-1" }.use { rekClient -> rekClient.deleteFaces(deleteFacesRequest) println("$faceIdVal was deleted from the collection") } }
-
For API details, see DeleteFaces
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DescribeCollection
.
For more information, see Describing a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun describeColl(collectionName: String) { val request = DescribeCollectionRequest { collectionId = collectionName } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.describeCollection(request) println("The collection Arn is ${response.collectionArn}") println("The collection contains this many faces ${response.faceCount}") } }
-
For API details, see DescribeCollection
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DetectFaces
.
For more information, see Detecting faces in an image.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun detectFacesinImage(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectFacesRequest { attributes = listOf(Attribute.All) image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectFaces(request) response.faceDetails?.forEach { face -> val ageRange = face.ageRange println("The detected face is estimated to be between ${ageRange?.low} and ${ageRange?.high} years old.") println("There is a smile ${face.smile?.value}") } } }
-
For API details, see DetectFaces
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DetectLabels
.
For more information, see Detecting labels in an image.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun detectImageLabels(sourceImage: String) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectLabelsRequest { image = souImage maxLabels = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectLabels(request) response.labels?.forEach { label -> println("${label.name} : ${label.confidence}") } } }
-
For API details, see DetectLabels
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DetectModerationLabels
.
For more information, see Detecting inappropriate images.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun detectModLabels(sourceImage: String) { val myImage = Image { this.bytes = (File(sourceImage).readBytes()) } val request = DetectModerationLabelsRequest { image = myImage minConfidence = 60f } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectModerationLabels(request) response.moderationLabels?.forEach { label -> println("Label: ${label.name} - Confidence: ${label.confidence} % Parent: ${label.parentName}") } } }
-
For API details, see DetectModerationLabels
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use DetectText
.
For more information, see Detecting text in an image.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun detectTextLabels(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = DetectTextRequest { image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectText(request) response.textDetections?.forEach { text -> println("Detected: ${text.detectedText}") println("Confidence: ${text.confidence}") println("Id: ${text.id}") println("Parent Id: ${text.parentId}") println("Type: ${text.type}") } } }
-
For API details, see DetectText
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use IndexFaces
.
For more information, see Adding faces to a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun addToCollection( collectionIdVal: String?, sourceImage: String, ) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = IndexFacesRequest { collectionId = collectionIdVal image = souImage maxFaces = 1 qualityFilter = QualityFilter.Auto detectionAttributes = listOf(Attribute.Default) } RekognitionClient { region = "us-east-1" }.use { rekClient -> val facesResponse = rekClient.indexFaces(request) // Display the results. println("Results for the image") println("\n Faces indexed:") facesResponse.faceRecords?.forEach { faceRecord -> println("Face ID: ${faceRecord.face?.faceId}") println("Location: ${faceRecord.faceDetail?.boundingBox}") } println("Faces not indexed:") facesResponse.unindexedFaces?.forEach { unindexedFace -> println("Location: ${unindexedFace.faceDetail?.boundingBox}") println("Reasons:") unindexedFace.reasons?.forEach { reason -> println("Reason: $reason") } } } }
-
For API details, see IndexFaces
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use ListCollections
.
For more information, see Listing collections.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun listAllCollections() { val request = ListCollectionsRequest { maxResults = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.listCollections(request) response.collectionIds?.forEach { resultId -> println(resultId) } } }
-
For API details, see ListCollections
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use ListFaces
.
For more information, see Listing faces in a collection.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun listFacesCollection(collectionIdVal: String?) { val request = ListFacesRequest { collectionId = collectionIdVal maxResults = 10 } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.listFaces(request) response.faces?.forEach { face -> println("Confidence level there is a face: ${face.confidence}") println("The face Id value is ${face.faceId}") } } }
-
For API details, see ListFaces
in AWS SDK for Kotlin API reference.
-
The following code example shows how to use RecognizeCelebrities
.
For more information, see Recognizing celebrities in an image.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. suspend fun recognizeAllCelebrities(sourceImage: String?) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = RecognizeCelebritiesRequest { image = souImage } RekognitionClient { region = "us-east-1" }.use { rekClient -> val response = rekClient.recognizeCelebrities(request) response.celebrityFaces?.forEach { celebrity -> println("Celebrity recognized: ${celebrity.name}") println("Celebrity ID:${celebrity.id}") println("Further information (if available):") celebrity.urls?.forEach { url -> println(url) } } println("${response.unrecognizedFaces?.size} face(s) were unrecognized.") } }
-
For API details, see RecognizeCelebrities
in AWS SDK for Kotlin API reference.
-
Scenarios
The following code example shows how to create a serverless application that lets users manage photos using labels.
- SDK for Kotlin
-
Shows how to develop a photo asset management application that detects labels in images using Amazon Rekognition and stores them for later retrieval.
For complete source code and instructions on how to set up and run, see the full example on GitHub
. For a deep dive into the origin of this example see the post on AWS Community
. Services used in this example
API Gateway
DynamoDB
Lambda
Amazon Rekognition
Amazon S3
Amazon SNS
The following code example shows how to:
Start Amazon Rekognition jobs to detect elements like people, objects, and text in videos.
Check job status until jobs finish.
Output the list of elements detected by each job.
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. Detect faces in a video stored in an Amazon S3 bucket.
suspend fun startFaceDetection( channelVal: NotificationChannel?, bucketVal: String, videoVal: String, ) { val s3Obj = S3Object { bucket = bucketVal name = videoVal } val vidOb = Video { s3Object = s3Obj } val request = StartFaceDetectionRequest { jobTag = "Faces" faceAttributes = FaceAttributes.All notificationChannel = channelVal video = vidOb } RekognitionClient { region = "us-east-1" }.use { rekClient -> val startLabelDetectionResult = rekClient.startFaceDetection(request) startJobId = startLabelDetectionResult.jobId.toString() } } suspend fun getFaceResults() { var finished = false var status: String var yy = 0 RekognitionClient { region = "us-east-1" }.use { rekClient -> var response: GetFaceDetectionResponse? = null val recognitionRequest = GetFaceDetectionRequest { jobId = startJobId maxResults = 10 } // Wait until the job succeeds. while (!finished) { response = rekClient.getFaceDetection(recognitionRequest) status = response.jobStatus.toString() if (status.compareTo("SUCCEEDED") == 0) { finished = true } else { println("$yy status is: $status") delay(1000) } yy++ } // Proceed when the job is done - otherwise VideoMetadata is null. val videoMetaData = response?.videoMetadata println("Format: ${videoMetaData?.format}") println("Codec: ${videoMetaData?.codec}") println("Duration: ${videoMetaData?.durationMillis}") println("FrameRate: ${videoMetaData?.frameRate}") // Show face information. response?.faces?.forEach { face -> println("Age: ${face.face?.ageRange}") println("Face: ${face.face?.beard}") println("Eye glasses: ${face?.face?.eyeglasses}") println("Mustache: ${face.face?.mustache}") println("Smile: ${face.face?.smile}") } } }
Detect inappropriate or offensive content in a video stored in an Amazon S3 bucket.
suspend fun startModerationDetection( channel: NotificationChannel?, bucketVal: String?, videoVal: String?, ) { val s3Obj = S3Object { bucket = bucketVal name = videoVal } val vidOb = Video { s3Object = s3Obj } val request = StartContentModerationRequest { jobTag = "Moderation" notificationChannel = channel video = vidOb } RekognitionClient { region = "us-east-1" }.use { rekClient -> val startModDetectionResult = rekClient.startContentModeration(request) startJobId = startModDetectionResult.jobId.toString() } } suspend fun getModResults() { var finished = false var status: String var yy = 0 RekognitionClient { region = "us-east-1" }.use { rekClient -> var modDetectionResponse: GetContentModerationResponse? = null val modRequest = GetContentModerationRequest { jobId = startJobId maxResults = 10 } // Wait until the job succeeds. while (!finished) { modDetectionResponse = rekClient.getContentModeration(modRequest) status = modDetectionResponse.jobStatus.toString() if (status.compareTo("SUCCEEDED") == 0) { finished = true } else { println("$yy status is: $status") delay(1000) } yy++ } // Proceed when the job is done - otherwise VideoMetadata is null. val videoMetaData = modDetectionResponse?.videoMetadata println("Format: ${videoMetaData?.format}") println("Codec: ${videoMetaData?.codec}") println("Duration: ${videoMetaData?.durationMillis}") println("FrameRate: ${videoMetaData?.frameRate}") modDetectionResponse?.moderationLabels?.forEach { mod -> val seconds: Long = mod.timestamp / 1000 print("Mod label: $seconds ") println(mod.moderationLabel) } } }
-
For API details, see the following topics in AWS SDK for Kotlin API reference.
-
The following code example shows how to build an app that uses Amazon Rekognition to detect objects by category in images.
- SDK for Kotlin
-
Shows how to use Amazon Rekognition Kotlin API to create an app that uses Amazon Rekognition to identify objects by category in images located in an Amazon Simple Storage Service (Amazon S3) bucket. The app sends the admin an email notification with the results using Amazon Simple Email Service (Amazon SES).
For complete source code and instructions on how to set up and run, see the full example on GitHub
. Services used in this example
Amazon Rekognition
Amazon S3
Amazon SES