Amazon Bedrock Runtime examples using AWS SDK for .NET - AWS SDK for .NET

Amazon Bedrock Runtime examples using AWS SDK for .NET

The following code examples show you how to perform actions and implement common scenarios by using the AWS SDK for .NET with Amazon Bedrock Runtime.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple functions within a service or combined with other AWS services.

Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.

Scenarios

The following code example shows how to create playgrounds to interact with Amazon Bedrock foundation models through different modalities.

AWS SDK for .NET

.NET Foundation Model (FM) Playground is a .NET MAUI Blazor sample application that showcases how to use Amazon Bedrock from C# code. This example shows how .NET and C# developers can use Amazon Bedrock to build generative AI-enabled applications. You can test and interact with Amazon Bedrock foundation models by using the following four playgrounds:

  • A text playground.

  • A chat playground.

  • A voice chat playground.

  • An image playground.

The example also lists and displays the foundation models you have access to and their characteristics. For source code and deployment instructions, see the project in GitHub.

Services used in this example
  • Amazon Bedrock Runtime

AI21 Labs Jurassic-2

The following code example shows how to send a text message to AI21 Labs Jurassic-2, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to AI21 Labs Jurassic-2, using Bedrock's Converse API.

// Use the Converse API to send a text message to AI21 Labs Jurassic-2. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Jurassic-2 Mid. var modelId = "ai21.j2-mid-v1"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to AI21 Labs Jurassic-2, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to AI21 Labs Jurassic-2. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Jurassic-2 Mid. var modelId = "ai21.j2-mid-v1"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = userMessage, maxTokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["completions"]?[0]?["data"]?["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

Amazon Titan Text

The following code example shows how to send a text message to Amazon Titan Text, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Amazon Titan Text, using Bedrock's Converse API.

// Use the Converse API to send a text message to Amazon Titan Text. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Amazon Titan Text, using Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Amazon Titan Text, using Bedrock's Converse API and process the response stream in real-time.

// Use the Converse API to send a text message to Amazon Titan Text // and print the response stream. using System; using System.Collections.Generic; using System.Linq; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseStreamRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var chunk in response.Stream.AsEnumerable()) { if (chunk is ContentBlockDeltaEvent) { Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text); } } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see ConverseStream in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Amazon Titan Text, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Amazon Titan Text. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { inputText = userMessage, textGenerationConfig = new { maxTokenCount = 512, temperature = 0.5 } }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["results"]?[0]?["outputText"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Amazon Titan Text models, using the Invoke Model API, and print the response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Amazon Titan Text // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { inputText = userMessage, textGenerationConfig = new { maxTokenCount = 512, temperature = 0.5 } }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["outputText"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }

Anthropic Claude

The following code example shows how to send a text message to Anthropic Claude, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Anthropic Claude, using Bedrock's Converse API.

// Use the Converse API to send a text message to Anthropic Claude. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Anthropic Claude, using Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Anthropic Claude, using Bedrock's Converse API and process the response stream in real-time.

// Use the Converse API to send a text message to Anthropic Claude // and print the response stream. using System; using System.Collections.Generic; using System.Linq; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseStreamRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var chunk in response.Stream.AsEnumerable()) { if (chunk is ContentBlockDeltaEvent) { Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text); } } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see ConverseStream in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Anthropic Claude, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Anthropic Claude. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { anthropic_version = "bedrock-2023-05-31", max_tokens = 512, temperature = 0.5, messages = new[] { new { role = "user", content = userMessage } } }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["content"]?[0]?["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Anthropic Claude models, using the Invoke Model API, and print the response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Anthropic Claude // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { anthropic_version = "bedrock-2023-05-31", max_tokens = 512, temperature = 0.5, messages = new[] { new { role = "user", content = userMessage } } }); // Create a request with the model ID, the user message, and an inference configuration. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["delta"]?["text"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }

Cohere Command

The following code example shows how to send a text message to Cohere Command, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Cohere Command, using Bedrock's Converse API.

// Use the Converse API to send a text message to Cohere Command. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Cohere Command, using Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Cohere Command, using Bedrock's Converse API and process the response stream in real-time.

// Use the Converse API to send a text message to Cohere Command // and print the response stream. using System; using System.Collections.Generic; using System.Linq; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseStreamRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var chunk in response.Stream.AsEnumerable()) { if (chunk is ContentBlockDeltaEvent) { Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text); } } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see ConverseStream in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Cohere Command R and R+, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Cohere Command R. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { message = userMessage, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Cohere Command, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Cohere Command. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command Light. var modelId = "cohere.command-light-text-v14"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = userMessage, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["generations"]?[0]?["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Cohere Command, using the Invoke Model API with a response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Cohere Command R // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { message = userMessage, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["text"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Cohere Command, using the Invoke Model API with a response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Cohere Command // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Command Light. var modelId = "cohere.command-light-text-v14"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = userMessage, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["generations"]?[0]?["text"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

Meta Llama

The following code example shows how to send a text message to Meta Llama, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Meta Llama, using Bedrock's Converse API.

// Use the Converse API to send a text message to Meta Llama. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Llama 3 8b Instruct. var modelId = "meta.llama3-8b-instruct-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Meta Llama, using Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Meta Llama, using Bedrock's Converse API and process the response stream in real-time.

// Use the Converse API to send a text message to Meta Llama // and print the response stream. using System; using System.Collections.Generic; using System.Linq; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Llama 3 8b Instruct. var modelId = "meta.llama3-8b-instruct-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseStreamRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var chunk in response.Stream.AsEnumerable()) { if (chunk is ContentBlockDeltaEvent) { Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text); } } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see ConverseStream in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Meta Llama 3, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Meta Llama 3. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USWest2); // Set the model ID, e.g., Llama 3 70b Instruct. var modelId = "meta.llama3-70b-instruct-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Llama 2's instruction format. var formattedPrompt = $@" <|begin_of_text|><|start_header_id|>user<|end_header_id|> {prompt} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> "; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_gen_len = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["generation"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Meta Llama 3, using the Invoke Model API, and print the response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Meta Llama 3 // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USWest2); // Set the model ID, e.g., Llama 3 70b Instruct. var modelId = "meta.llama3-70b-instruct-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Llama 2's instruction format. var formattedPrompt = $@" <|begin_of_text|><|start_header_id|>user<|end_header_id|> {prompt} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> "; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_gen_len = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["generation"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }

Mistral AI

The following code example shows how to send a text message to Mistral, using Bedrock's Converse API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Mistral, using Bedrock's Converse API.

// Use the Converse API to send a text message to Mistral. using System; using System.Collections.Generic; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseAsync(request); // Extract and print the response text. string responseText = response?.Output?.Message?.Content?[0]?.Text ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see Converse in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Mistral, using Bedrock's Converse API and process the response stream in real-time.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Send a text message to Mistral, using Bedrock's Converse API and process the response stream in real-time.

// Use the Converse API to send a text message to Mistral // and print the response stream. using System; using System.Collections.Generic; using System.Linq; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Define the user message. var userMessage = "Describe the purpose of a 'hello world' program in one line."; // Create a request with the model ID, the user message, and an inference configuration. var request = new ConverseStreamRequest { ModelId = modelId, Messages = new List<Message> { new Message { Role = ConversationRole.User, Content = new List<ContentBlock> { new ContentBlock { Text = userMessage } } } }, InferenceConfig = new InferenceConfiguration() { MaxTokens = 512, Temperature = 0.5F, TopP = 0.9F } }; try { // Send the request to the Bedrock Runtime and wait for the result. var response = await client.ConverseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var chunk in response.Stream.AsEnumerable()) { if (chunk is ContentBlockDeltaEvent) { Console.Write((chunk as ContentBlockDeltaEvent).Delta.Text); } } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see ConverseStream in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Mistral models, using the Invoke Model API.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message.

// Use the native inference API to send a text message to Mistral. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var formattedPrompt = $"<s>[INST] {prompt} [/INST]"; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["outputs"]?[0]?["text"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
  • For API details, see InvokeModel in AWS SDK for .NET API Reference.

The following code example shows how to send a text message to Mistral AI models, using the Invoke Model API, and print the response stream.

AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Mistral // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var formattedPrompt = $"<s>[INST] {prompt} [/INST]"; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["outputs"]?[0]?["text"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }