选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

AWS::SageMaker::MonitoringSchedule ClusterConfig

聚焦模式
AWS::SageMaker::MonitoringSchedule ClusterConfig - AWS CloudFormation
此页面尚未翻译为您的语言。 请求翻译
筛选器视图

Configuration for the cluster used to run model monitoring jobs.

Syntax

To declare this entity in your AWS CloudFormation template, use the following syntax:

JSON

{ "InstanceCount" : Integer, "InstanceType" : String, "VolumeKmsKeyId" : String, "VolumeSizeInGB" : Integer }

YAML

InstanceCount: Integer InstanceType: String VolumeKmsKeyId: String VolumeSizeInGB: Integer

Properties

InstanceCount

The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.

Required: Yes

Type: Integer

Minimum: 1

Maximum: 100

Update requires: No interruption

InstanceType

The ML compute instance type for the processing job.

Required: Yes

Type: String

Update requires: No interruption

VolumeKmsKeyId

The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

Required: No

Type: String

Minimum: 1

Maximum: 2048

Update requires: No interruption

VolumeSizeInGB

The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.

Required: Yes

Type: Integer

Minimum: 1

Maximum: 16384

Update requires: No interruption

本页内容

隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。