本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
在 Amazon Bedrock 上调用多个基础模型
以下代码示例展示了如何在 Amazon Bedrock 上准备和向各种大型语言模型 (LLMs) 发送提示
- Go
-
- SDK适用于 Go V2
-
注意
还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库
中进行设置和运行。 在 Amazon Bedrock 上调用多个基础模型。
import ( "context" "encoding/base64" "fmt" "log" "math/rand" "os" "path/filepath" "strings" "github.com/aws/aws-sdk-go-v2/aws" "github.com/aws/aws-sdk-go-v2/service/bedrockruntime" "github.com/awsdocs/aws-doc-sdk-examples/gov2/bedrock-runtime/actions" "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools" ) // InvokeModelsScenario demonstrates how to use the Amazon Bedrock Runtime client // to invoke various foundation models for text and image generation // // 1. Generate text with Anthropic Claude 2 // 2. Generate text with AI21 Labs Jurassic-2 // 3. Generate text with Meta Llama 2 Chat // 4. Generate text and asynchronously process the response stream with Anthropic Claude 2 // 5. Generate an image with the Amazon Titan image generation model // 6. Generate text with Amazon Titan Text G1 Express model type InvokeModelsScenario struct { sdkConfig aws.Config invokeModelWrapper actions.InvokeModelWrapper responseStreamWrapper actions.InvokeModelWithResponseStreamWrapper questioner demotools.IQuestioner } // NewInvokeModelsScenario constructs an InvokeModelsScenario instance from a configuration. // It uses the specified config to get a Bedrock Runtime client and create wrappers for the // actions used in the scenario. func NewInvokeModelsScenario(sdkConfig aws.Config, questioner demotools.IQuestioner) InvokeModelsScenario { client := bedrockruntime.NewFromConfig(sdkConfig) return InvokeModelsScenario{ sdkConfig: sdkConfig, invokeModelWrapper: actions.InvokeModelWrapper{BedrockRuntimeClient: client}, responseStreamWrapper: actions.InvokeModelWithResponseStreamWrapper{BedrockRuntimeClient: client}, questioner: questioner, } } // Runs the interactive scenario. func (scenario InvokeModelsScenario) Run(ctx context.Context) { defer func() { if r := recover(); r != nil { log.Printf("Something went wrong with the demo: %v\n", r) } }() log.Println(strings.Repeat("=", 77)) log.Println("Welcome to the Amazon Bedrock Runtime model invocation demo.") log.Println(strings.Repeat("=", 77)) log.Printf("First, let's invoke a few large-language models using the synchronous client:\n\n") text2textPrompt := "In one paragraph, who are you?" log.Println(strings.Repeat("-", 77)) log.Printf("Invoking Claude with prompt: %v\n", text2textPrompt) scenario.InvokeClaude(ctx, text2textPrompt) log.Println(strings.Repeat("-", 77)) log.Printf("Invoking Jurassic-2 with prompt: %v\n", text2textPrompt) scenario.InvokeJurassic2(ctx, text2textPrompt) log.Println(strings.Repeat("=", 77)) log.Printf("Now, let's invoke Claude with the asynchronous client and process the response stream:\n\n") log.Println(strings.Repeat("-", 77)) log.Printf("Invoking Claude with prompt: %v\n", text2textPrompt) scenario.InvokeWithResponseStream(ctx, text2textPrompt) log.Println(strings.Repeat("=", 77)) log.Printf("Now, let's create an image with the Amazon Titan image generation model:\n\n") text2ImagePrompt := "stylized picture of a cute old steampunk robot" seed := rand.Int63n(2147483648) log.Println(strings.Repeat("-", 77)) log.Printf("Invoking Amazon Titan with prompt: %v\n", text2ImagePrompt) scenario.InvokeTitanImage(ctx, text2ImagePrompt, seed) log.Println(strings.Repeat("-", 77)) log.Printf("Invoking Titan Text Express with prompt: %v\n", text2textPrompt) scenario.InvokeTitanText(ctx, text2textPrompt) log.Println(strings.Repeat("=", 77)) log.Println("Thanks for watching!") log.Println(strings.Repeat("=", 77)) } func (scenario InvokeModelsScenario) InvokeClaude(ctx context.Context, prompt string) { completion, err := scenario.invokeModelWrapper.InvokeClaude(ctx, prompt) if err != nil { panic(err) } log.Printf("\nClaude : %v\n", strings.TrimSpace(completion)) } func (scenario InvokeModelsScenario) InvokeJurassic2(ctx context.Context, prompt string) { completion, err := scenario.invokeModelWrapper.InvokeJurassic2(ctx, prompt) if err != nil { panic(err) } log.Printf("\nJurassic-2 : %v\n", strings.TrimSpace(completion)) } func (scenario InvokeModelsScenario) InvokeWithResponseStream(ctx context.Context, prompt string) { log.Println("\nClaude with response stream:") _, err := scenario.responseStreamWrapper.InvokeModelWithResponseStream(ctx, prompt) if err != nil { panic(err) } log.Println() } func (scenario InvokeModelsScenario) InvokeTitanImage(ctx context.Context, prompt string, seed int64) { base64ImageData, err := scenario.invokeModelWrapper.InvokeTitanImage(ctx, prompt, seed) if err != nil { panic(err) } imagePath := saveImage(base64ImageData, "amazon.titan-image-generator-v1") fmt.Printf("The generated image has been saved to %s\n", imagePath) } func (scenario InvokeModelsScenario) InvokeTitanText(ctx context.Context, prompt string) { completion, err := scenario.invokeModelWrapper.InvokeTitanText(ctx, prompt) if err != nil { panic(err) } log.Printf("\nTitan Text Express : %v\n\n", strings.TrimSpace(completion)) }
-
有关API详细信息,请参阅 “参AWS SDK for Go API考” 中的以下主题。
-
- JavaScript
-
- SDK对于 JavaScript (v3)
-
注意
还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库
中进行设置和运行。 import { fileURLToPath } from "node:url"; import { Scenario, ScenarioAction, ScenarioInput, ScenarioOutput, } from "@aws-doc-sdk-examples/lib/scenario/index.js"; import { FoundationModels } from "../config/foundation_models.js"; /** * @typedef {Object} ModelConfig * @property {Function} module * @property {Function} invoker * @property {string} modelId * @property {string} modelName */ const greeting = new ScenarioOutput( "greeting", "Welcome to the Amazon Bedrock Runtime client demo!", { header: true }, ); const selectModel = new ScenarioInput("model", "First, select a model:", { type: "select", choices: Object.values(FoundationModels).map((model) => ({ name: model.modelName, value: model, })), }); const enterPrompt = new ScenarioInput("prompt", "Now, enter your prompt:", { type: "input", }); const printDetails = new ScenarioOutput( "print details", /** * @param {{ model: ModelConfig, prompt: string }} c */ (c) => console.log(`Invoking ${c.model.modelName} with '${c.prompt}'...`), ); const invokeModel = new ScenarioAction( "invoke model", /** * @param {{ model: ModelConfig, prompt: string, response: string }} c */ async (c) => { const modelModule = await c.model.module(); const invoker = c.model.invoker(modelModule); c.response = await invoker(c.prompt, c.model.modelId); }, ); const printResponse = new ScenarioOutput( "print response", /** * @param {{ response: string }} c */ (c) => c.response, ); const scenario = new Scenario("Amazon Bedrock Runtime Demo", [ greeting, selectModel, enterPrompt, printDetails, invokeModel, printResponse, ]); if (process.argv[1] === fileURLToPath(import.meta.url)) { scenario.run(); }
-
有关API详细信息,请参阅 “参AWS SDK for JavaScript API考” 中的以下主题。
-
- PHP
-
- 适用于 PHP 的 SDK
-
注意
还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库
中进行设置和运行。 LLMs在 Amazon Bedrock 上调用多个。
namespace BedrockRuntime; class GettingStartedWithBedrockRuntime { protected BedrockRuntimeService $bedrockRuntimeService; public function runExample() { echo "\n"; echo "---------------------------------------------------------------------\n"; echo "Welcome to the Amazon Bedrock Runtime getting started demo using PHP!\n"; echo "---------------------------------------------------------------------\n"; $bedrockRuntimeService = new BedrockRuntimeService(); $prompt = 'In one paragraph, who are you?'; echo "\nPrompt: " . $prompt; echo "\n\nAnthropic Claude:"; echo $bedrockRuntimeService->invokeClaude($prompt); echo "\n\nAI21 Labs Jurassic-2: "; echo $bedrockRuntimeService->invokeJurassic2($prompt); echo "\n---------------------------------------------------------------------\n"; $image_prompt = 'stylized picture of a cute old steampunk robot'; echo "\nImage prompt: " . $image_prompt; echo "\n\nStability.ai Stable Diffusion XL:\n"; $diffusionSeed = rand(0, 4294967295); $style_preset = 'photographic'; $base64 = $bedrockRuntimeService->invokeStableDiffusion($image_prompt, $diffusionSeed, $style_preset); $image_path = $this->saveImage($base64, 'stability.stable-diffusion-xl'); echo "The generated images have been saved to $image_path"; echo "\n\nAmazon Titan Image Generation:\n"; $titanSeed = rand(0, 2147483647); $base64 = $bedrockRuntimeService->invokeTitanImage($image_prompt, $titanSeed); $image_path = $this->saveImage($base64, 'amazon.titan-image-generator-v1'); echo "The generated images have been saved to $image_path"; } private function saveImage($base64_image_data, $model_id): string { $output_dir = "output"; if (!file_exists($output_dir)) { mkdir($output_dir); } $i = 1; while (file_exists("$output_dir/$model_id" . '_' . "$i.png")) { $i++; } $image_data = base64_decode($base64_image_data); $file_path = "$output_dir/$model_id" . '_' . "$i.png"; $file = fopen($file_path, 'wb'); fwrite($file, $image_data); fclose($file); return $file_path; } }
-
有关API详细信息,请参阅 “参AWS SDK for PHP API考” 中的以下主题。
-
有关 AWS SDK开发者指南和代码示例的完整列表,请参阅将 Amazon Bedrock 与 AWS SDK。本主题还包括有关入门的信息以及有关先前SDK版本的详细信息。
创建用于与 Amazon Bedrock 基础模型进行交互的平台应用程序
使用 Step Functions 编排生成式人工智能应用程序