Amazon Titan 文字模型 - Amazon Bedrock

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

Amazon Titan 文字模型

Amazon Titan 文本模型支持以下推理参数。

有关 Titan 文字提示工程指南,请参阅 Titan 文字提示工程指南

有关 Titan 模型,请参阅亚马逊概述 Titan 模型

请求和回应

请求正文在InvokeModelInvokeModelWithResponseStream请求的body字段中传递。

Request
{ "inputText": string, "textGenerationConfig": { "temperature": float, "topP": float, "maxTokenCount": int, "stopSequences": [string] } }

以下参数为必需参数:

  • inputText— 提示提供生成响应的模型。要以对话方式生成回复,请使用以下格式封装提示:

    "inputText": "User: <prompt>\nBot:

textGenerationConfig 是可选项。您可以使用它来配置以下推理参数

  • 温度-使用较低的值来降低响应的随机性。

    默认 最低 最高
    0.7 0.0 1.0
  • TopP — 使用较低的值忽略可能性较小的选项并减少响应的多样性。

    默认 最低 最高
    0.9 0.0 1.0
  • maxTokenCount— 指定要在响应中生成的最大令牌数。严格执行最大代币限制。

    模型 默认 最低 最高
    Titan Text Lite 512 0 4,096
    Titan Text Express 512 0 8192
    泰坦文字首映 512 0 3,072
  • stopSequences— 指定字符序列以指示模型应停止的位置。

InvokeModel Response
{ "inputTextTokenCount": int, "results": [{ "tokenCount": int, "outputText": "\n<response>\n", "completionReason": "string" }] }

响应正文包含以下字段:

  • inputTextToken计数-提示中的代币数量。

  • r@@ es ults-一个由一个项目组成的数组,一个包含以下字段的对象:

    • tokenCount— 响应中的代币数量。

    • outputText – 响应中的文本。

    • completionReason— 完成生成响应的原因。可能有以下原因:

      • FINISHED – 响应已完全生成。

      • LENGTH— 由于您设置的响应长度,响应被截断。

      • STOP_ CRITERIA _ MET — 由于已达到停止标准,响应被截断。

      • RAG_ QUERY _ WHEN RAG _ DISABLED — 该功能已禁用,无法完成查询。

      • CONTENT_ FILTERED — 内容已被应用的内容过滤器筛选或移除。

InvokeModelWithResponseStream Response

响应流正文中的每块文本均采用以下格式。您必须对 bytes 字段进行解码(有关示例,请参阅 提交包含 InvokeModel API操作的单个提示)。

{ "chunk": { "bytes": b'{ "index": int, "inputTextTokenCount": int, "totalOutputTextTokenCount": int, "outputText": "<response-chunk>", "completionReason": "string" }' } }
  • inde x — 流媒体响应中区块的索引。

  • inputTextToken计数-提示中的代币数量。

  • totalOutputTextTokenCount— 响应中的代币数量。

  • outputText – 响应中的文本。

  • completionReason— 完成生成响应的原因。可能有以下原因。

    • FINISHED – 响应已完全生成。

    • LENGTH— 由于您设置的响应长度,响应被截断。

    • STOP_ CRITERIA _ MET — 由于已达到停止标准,响应被截断。

    • RAG_ QUERY _ WHEN RAG _ DISABLED — 该功能已禁用,无法完成查询。

    • CONTENT_ FILTERED — 内容已被应用的过滤器筛选或删除。

代码示例

以下示例显示了如何使用 Amazon 运行推理 Titan 使用 Python 为高级模型发送文本SDK。

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to create a list of action items from a meeting transcript with the Amazon Titan Text model (on demand). """ import json import logging import boto3 from botocore.exceptions import ClientError class ImageError(Exception): "Custom exception for errors returned by Amazon Titan Text models" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using Amazon Titan Text models on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (json): The response from the model. """ logger.info( "Generating text with Amazon Titan Text model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get("body").read()) finish_reason = response_body.get("error") if finish_reason is not None: raise ImageError(f"Text generation error. Error is {finish_reason}") logger.info( "Successfully generated text with Amazon Titan Text model %s", model_id) return response_body def main(): """ Entrypoint for Amazon Titan Text model example. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") # You can replace the model_id with any other Titan Text Models # Titan Text Model family model_id is as mentioned below: # amazon.titan-text-premier-v1:0, amazon.titan-text-express-v1, amazon.titan-text-lite-v1 model_id = 'amazon.titan-text-premier-v1:0' prompt = """Meeting transcript: Miguel: Hi Brant, I want to discuss the workstream for our new product launch Brant: Sure Miguel, is there anything in particular you want to discuss? Miguel: Yes, I want to talk about how users enter into the product. Brant: Ok, in that case let me add in Namita. Namita: Hey everyone Brant: Hi Namita, Miguel wants to discuss how users enter into the product. Miguel: its too complicated and we should remove friction. for example, why do I need to fill out additional forms? I also find it difficult to find where to access the product when I first land on the landing page. Brant: I would also add that I think there are too many steps. Namita: Ok, I can work on the landing page to make the product more discoverable but brant can you work on the additonal forms? Brant: Yes but I would need to work with James from another team as he needs to unblock the sign up workflow. Miguel can you document any other concerns so that I can discuss with James only once? Miguel: Sure. From the meeting transcript above, Create a list of action items for each person. """ body = json.dumps({ "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 3072, "stopSequences": [], "temperature": 0.7, "topP": 0.9 } }) response_body = generate_text(model_id, body) print(f"Input token count: {response_body['inputTextTokenCount']}") for result in response_body['results']: print(f"Token count: {result['tokenCount']}") print(f"Output text: {result['outputText']}") print(f"Completion reason: {result['completionReason']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except ImageError as err: logger.error(err.message) print(err.message) else: print( f"Finished generating text with the Amazon Titan Text Premier model {model_id}.") if __name__ == "__main__": main()

以下示例显示了如何使用 Amazon 运行推理 Titan Text G1 - Express 用 Python 建模SDK。

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to create a list of action items from a meeting transcript with the Amazon &titan-text-express; model (on demand). """ import json import logging import boto3 from botocore.exceptions import ClientError class ImageError(Exception): "Custom exception for errors returned by Amazon &titan-text-express; model" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text(model_id, body): """ Generate text using Amazon &titan-text-express; model on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (json): The response from the model. """ logger.info( "Generating text with Amazon &titan-text-express; model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get("body").read()) finish_reason = response_body.get("error") if finish_reason is not None: raise ImageError(f"Text generation error. Error is {finish_reason}") logger.info( "Successfully generated text with Amazon &titan-text-express; model %s", model_id) return response_body def main(): """ Entrypoint for Amazon &titan-text-express; example. """ try: logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = 'amazon.titan-text-express-v1' prompt = """Meeting transcript: Miguel: Hi Brant, I want to discuss the workstream for our new product launch Brant: Sure Miguel, is there anything in particular you want to discuss? Miguel: Yes, I want to talk about how users enter into the product. Brant: Ok, in that case let me add in Namita. Namita: Hey everyone Brant: Hi Namita, Miguel wants to discuss how users enter into the product. Miguel: its too complicated and we should remove friction. for example, why do I need to fill out additional forms? I also find it difficult to find where to access the product when I first land on the landing page. Brant: I would also add that I think there are too many steps. Namita: Ok, I can work on the landing page to make the product more discoverable but brant can you work on the additonal forms? Brant: Yes but I would need to work with James from another team as he needs to unblock the sign up workflow. Miguel can you document any other concerns so that I can discuss with James only once? Miguel: Sure. From the meeting transcript above, Create a list of action items for each person. """ body = json.dumps({ "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 4096, "stopSequences": [], "temperature": 0, "topP": 1 } }) response_body = generate_text(model_id, body) print(f"Input token count: {response_body['inputTextTokenCount']}") for result in response_body['results']: print(f"Token count: {result['tokenCount']}") print(f"Output text: {result['outputText']}") print(f"Completion reason: {result['completionReason']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except ImageError as err: logger.error(err.message) print(err.message) else: print( f"Finished generating text with the Amazon &titan-text-express; model {model_id}.") if __name__ == "__main__": main()