匡威API工具使用示例 - Amazon Bedrock

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

匡威API工具使用示例

你可以使用 Converse API 让模型在对话中使用工具。以下 Python 示例展示了如何使用在虚构的广播电台上返回最受欢迎的歌曲的工具。C onverse 示例显示了如何同步使用工具。该ConverseStream示例显示了如何异步使用工具。有关其他代码示例,请参阅使用 Amazon Bedrock Runtime 的代码示例 AWS SDKs

Converse

此示例说明如何使用带有Converse操作的工具 Command R模型。

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to use tools with the Converse API and the Cohere Command R model. """ import logging import json import boto3 from botocore.exceptions import ClientError class StationNotFoundError(Exception): """Raised when a radio station isn't found.""" pass logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def get_top_song(call_sign): """Returns the most popular song for the requested station. Args: call_sign (str): The call sign for the station for which you want the most popular song. Returns: response (json): The most popular song and artist. """ song = "" artist = "" if call_sign == 'WZPZ': song = "Elemental Hotel" artist = "8 Storey Hike" else: raise StationNotFoundError(f"Station {call_sign} not found.") return song, artist def generate_text(bedrock_client, model_id, tool_config, input_text): """Generates text using the supplied Amazon Bedrock model. If necessary, the function handles tool use requests and sends the result to the model. Args: bedrock_client: The Boto3 Bedrock runtime client. model_id (str): The Amazon Bedrock model ID. tool_config (dict): The tool configuration. input_text (str): The input text. Returns: Nothing. """ logger.info("Generating text with model %s", model_id) # Create the initial message from the user input. messages = [{ "role": "user", "content": [{"text": input_text}] }] response = bedrock_client.converse( modelId=model_id, messages=messages, toolConfig=tool_config ) output_message = response['output']['message'] messages.append(output_message) stop_reason = response['stopReason'] if stop_reason == 'tool_use': # Tool use requested. Call the tool and send the result to the model. tool_requests = response['output']['message']['content'] for tool_request in tool_requests: if 'toolUse' in tool_request: tool = tool_request['toolUse'] logger.info("Requesting tool %s. Request: %s", tool['name'], tool['toolUseId']) if tool['name'] == 'top_song': tool_result = {} try: song, artist = get_top_song(tool['input']['sign']) tool_result = { "toolUseId": tool['toolUseId'], "content": [{"json": {"song": song, "artist": artist}}] } except StationNotFoundError as err: tool_result = { "toolUseId": tool['toolUseId'], "content": [{"text": err.args[0]}], "status": 'error' } tool_result_message = { "role": "user", "content": [ { "toolResult": tool_result } ] } messages.append(tool_result_message) # Send the tool result to the model. response = bedrock_client.converse( modelId=model_id, messages=messages, toolConfig=tool_config ) output_message = response['output']['message'] # print the final response from the model. for content in output_message['content']: print(json.dumps(content, indent=4)) def main(): """ Entrypoint for tool use example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "cohere.command-r-v1:0" input_text = "What is the most popular song on WZPZ?" tool_config = { "tools": [ { "toolSpec": { "name": "top_song", "description": "Get the most popular song played on a radio station.", "inputSchema": { "json": { "type": "object", "properties": { "sign": { "type": "string", "description": "The call sign for the radio station for which you want the most popular song. Example calls signs are WZPZ, and WKRP." } }, "required": [ "sign" ] } } } } ] } bedrock_client = boto3.client(service_name='bedrock-runtime') try: print(f"Question: {input_text}") generate_text(bedrock_client, model_id, tool_config, input_text) except ClientError as err: message = err.response['Error']['Message'] logger.error("A client error occurred: %s", message) print(f"A client error occured: {message}") else: print( f"Finished generating text with model {model_id}.") if __name__ == "__main__": main()
ConverseStream

此示例说明如何使用具有ConverseStream流式传输操作的工具和 Anthropic Claude 3 Haiku模型。

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to use a tool with a streaming conversation. """ import logging import json import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) class StationNotFoundError(Exception): """Raised when a radio station isn't found.""" pass def get_top_song(call_sign): """Returns the most popular song for the requested station. Args: call_sign (str): The call sign for the station for which you want the most popular song. Returns: response (json): The most popular song and artist. """ song = "" artist = "" if call_sign == 'WZPZ': song = "Elemental Hotel" artist = "8 Storey Hike" else: raise StationNotFoundError(f"Station {call_sign} not found.") return song, artist def stream_messages(bedrock_client, model_id, messages, tool_config): """ Sends a message to a model and streams the response. Args: bedrock_client: The Boto3 Bedrock runtime client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. tool_config : Tool Information to send to the model. Returns: stop_reason (str): The reason why the model stopped generating text. message (JSON): The message that the model generated. """ logger.info("Streaming messages with model %s", model_id) response = bedrock_client.converse_stream( modelId=model_id, messages=messages, toolConfig=tool_config ) stop_reason = "" message = {} content = [] message['content'] = content text = '' tool_use = {} #stream the response into a message. for chunk in response['stream']: if 'messageStart' in chunk: message['role'] = chunk['messageStart']['role'] elif 'contentBlockStart' in chunk: tool = chunk['contentBlockStart']['start']['toolUse'] tool_use['toolUseId'] = tool['toolUseId'] tool_use['name'] = tool['name'] elif 'contentBlockDelta' in chunk: delta = chunk['contentBlockDelta']['delta'] if 'toolUse' in delta: if 'input' not in tool_use: tool_use['input'] = '' tool_use['input'] += delta['toolUse']['input'] elif 'text' in delta: text += delta['text'] print(delta['text'], end='') elif 'contentBlockStop' in chunk: if 'input' in tool_use: tool_use['input'] = json.loads(tool_use['input']) content.append({'toolUse': tool_use}) tool_use = {} else: content.append({'text': text}) text = '' elif 'messageStop' in chunk: stop_reason = chunk['messageStop']['stopReason'] return stop_reason, message def main(): """ Entrypoint for streaming tool use example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "anthropic.claude-3-haiku-20240307-v1:0" input_text = "What is the most popular song on WZPZ?" try: bedrock_client = boto3.client(service_name='bedrock-runtime') # Create the initial message from the user input. messages = [{ "role": "user", "content": [{"text": input_text}] }] # Define the tool to send to the model. tool_config = { "tools": [ { "toolSpec": { "name": "top_song", "description": "Get the most popular song played on a radio station.", "inputSchema": { "json": { "type": "object", "properties": { "sign": { "type": "string", "description": "The call sign for the radio station for which you want the most popular song. Example calls signs are WZPZ and WKRP." } }, "required": ["sign"] } } } } ] } # Send the message and get the tool use request from response. stop_reason, message = stream_messages( bedrock_client, model_id, messages, tool_config) messages.append(message) if stop_reason == "tool_use": for content in message['content']: if 'toolUse' in content: tool = content['toolUse'] if tool['name'] == 'top_song': tool_result = {} try: song, artist = get_top_song(tool['input']['sign']) tool_result = { "toolUseId": tool['toolUseId'], "content": [{"json": {"song": song, "artist": artist}}] } except StationNotFoundError as err: tool_result = { "toolUseId": tool['toolUseId'], "content": [{"text": err.args[0]}], "status": 'error' } tool_result_message = { "role": "user", "content": [ { "toolResult": tool_result } ] } # Add the result info to message. messages.append(tool_result_message) #Send the messages, including the tool result, to the model. stop_reason, message = stream_messages( bedrock_client, model_id, messages, tool_config) except ClientError as err: message = err.response['Error']['Message'] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print( f"\nFinished streaming messages with model {model_id}.") if __name__ == "__main__": main()