本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
使用 Java 或 Python 分析存储在 Amazon S3 存储桶中的视频 (SDK)
本过程展示如何使用 Amazon Rekognition Video 标签检测操作、存储在 Amazon S3 存储桶内的视频和 Amazon SNS 主题来检测视频中的标签。本过程还说明如何使用 Amazon SQS 队列从 Amazon SNS 主题获取完成状态。有关更多信息,请参阅 调用 Amazon Rekognition Video 操作。您不必局限于使用 Amazon SQS 队列。例如,您可以使用 AWS Lambda 函数来获取完成状态。有关更多信息,请参阅使用 Amazon SNS 通知调用 Lambda 函数。
本过程中的示例代码展示如何执行以下操作:
-
创建 Amazon SNS 主题。
-
创建 Amazon SQS 队列。
-
为 Amazon Rekognition Video 提供将视频分析操作的完成状态发布到 Amazon SNS 主题的权限。
-
为 Amazon SQS 队列订阅 Amazon SNS 主题。
-
通过调用 StartLabelDetection 启动视频分析请求。
-
从 Amazon SQS 队列获取完成状态。示例将跟踪
StartLabelDetection
中返回的任务标识符 (JobId
) 并且仅获取与从完成状态读取的任务标识符匹配的结果。如果其他应用程序使用的是同一队列和主题,那么这是一个重要的考量。为简便起见,该示例会删除不匹配的任务。请考虑将它们添加到 Amazon SQS 死信队列以进行进一步调查。 -
通过调用 GetLabelDetection 来获取和显示视频分析结果。
先决条件
Java 和 Python 提供了此过程的示例代码。您需要安装相应的 AWS SDK。有关更多信息,请参阅 Amazon Rekognition 入门。您使用的 AWS 账户必须具有对 Amazon Rekognition API 的访问权限。有关更多信息,请参阅 Amazon Rekognition 定义的操作。
检测视频中的标签
-
配置用户对 Amazon Rekognition Video 的访问权限并配置 Amazon Rekognition Video 对 Amazon SNS 的访问权限。有关更多信息,请参阅 配置 Amazon Rekognition Video。您无需执行步骤 3、4、5 和 6,因为示例代码将创建并配置 Amazon SNS 主题和 Amazon SQS 队列。
-
将 MOV 或 MPEG-4 格式的视频文件上传到 Amazon S3 存储桶。对于测试,请上传时长不超过 30 秒的视频。
有关说明,请参阅《Amazon Simple Storage Service 用户指南》中的将对象上传到 Amazon S3。
-
使用以下代码示例检测视频中的标签。
- Java
-
在函数
main
中:-
将
roleArn
替换为您在配置 Amazon Rekognition Video的步骤 7 中创建的 IAM 服务角色的 ARN。 -
将
amzn-s3-demo-bucket
和video
的值替换为您在步骤 2 中指定的存储桶和视频文件名。
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package com.amazonaws.samples; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.CelebrityDetail; import com.amazonaws.services.rekognition.model.CelebrityRecognition; import com.amazonaws.services.rekognition.model.CelebrityRecognitionSortBy; import com.amazonaws.services.rekognition.model.ContentModerationDetection; import com.amazonaws.services.rekognition.model.ContentModerationSortBy; import com.amazonaws.services.rekognition.model.Face; import com.amazonaws.services.rekognition.model.FaceDetection; import com.amazonaws.services.rekognition.model.FaceMatch; import com.amazonaws.services.rekognition.model.FaceSearchSortBy; import com.amazonaws.services.rekognition.model.GetCelebrityRecognitionRequest; import com.amazonaws.services.rekognition.model.GetCelebrityRecognitionResult; import com.amazonaws.services.rekognition.model.GetContentModerationRequest; import com.amazonaws.services.rekognition.model.GetContentModerationResult; import com.amazonaws.services.rekognition.model.GetFaceDetectionRequest; import com.amazonaws.services.rekognition.model.GetFaceDetectionResult; import com.amazonaws.services.rekognition.model.GetFaceSearchRequest; import com.amazonaws.services.rekognition.model.GetFaceSearchResult; import com.amazonaws.services.rekognition.model.GetLabelDetectionRequest; import com.amazonaws.services.rekognition.model.GetLabelDetectionResult; import com.amazonaws.services.rekognition.model.GetPersonTrackingRequest; import com.amazonaws.services.rekognition.model.GetPersonTrackingResult; import com.amazonaws.services.rekognition.model.Instance; import com.amazonaws.services.rekognition.model.Label; import com.amazonaws.services.rekognition.model.LabelDetection; import com.amazonaws.services.rekognition.model.LabelDetectionSortBy; import com.amazonaws.services.rekognition.model.NotificationChannel; import com.amazonaws.services.rekognition.model.Parent; import com.amazonaws.services.rekognition.model.PersonDetection; import com.amazonaws.services.rekognition.model.PersonMatch; import com.amazonaws.services.rekognition.model.PersonTrackingSortBy; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.StartCelebrityRecognitionRequest; import com.amazonaws.services.rekognition.model.StartCelebrityRecognitionResult; import com.amazonaws.services.rekognition.model.StartContentModerationRequest; import com.amazonaws.services.rekognition.model.StartContentModerationResult; import com.amazonaws.services.rekognition.model.StartFaceDetectionRequest; import com.amazonaws.services.rekognition.model.StartFaceDetectionResult; import com.amazonaws.services.rekognition.model.StartFaceSearchRequest; import com.amazonaws.services.rekognition.model.StartFaceSearchResult; import com.amazonaws.services.rekognition.model.StartLabelDetectionRequest; import com.amazonaws.services.rekognition.model.StartLabelDetectionResult; import com.amazonaws.services.rekognition.model.StartPersonTrackingRequest; import com.amazonaws.services.rekognition.model.StartPersonTrackingResult; import com.amazonaws.services.rekognition.model.Video; import com.amazonaws.services.rekognition.model.VideoMetadata; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import java.util.*; public class VideoDetect { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String video = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonRekognition rek = null; private static NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); public static void main(String[] args) throws Exception { video = ""; bucket = ""; roleArn= ""; sns = AmazonSNSClientBuilder.defaultClient(); sqs= AmazonSQSClientBuilder.defaultClient(); rek = AmazonRekognitionClientBuilder.defaultClient(); CreateTopicandQueue(); //================================================= StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults(); //================================================= DeleteTopicandQueue(); System.out.println("Done!"); } static boolean GetSQSMessageSuccess() throws Exception { boolean success=false; System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ success=true; } else{ System.out.println("Video analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing video"); return success; } private static void StartLabelDetection(String bucket, String video) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartLabelDetectionRequest req = new StartLabelDetectionRequest() .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withMinConfidence(50F) .withJobTag("DetectingLabels") .withNotificationChannel(channel); StartLabelDetectionResult startLabelDetectionResult = rek.startLabelDetection(req); startJobId=startLabelDetectionResult.getJobId(); } private static void GetLabelDetectionResults() throws Exception{ int maxResults=10; String paginationToken=null; GetLabelDetectionResult labelDetectionResult=null; do { if (labelDetectionResult !=null){ paginationToken = labelDetectionResult.getNextToken(); } GetLabelDetectionRequest labelDetectionRequest= new GetLabelDetectionRequest() .withJobId(startJobId) .withSortBy(LabelDetectionSortBy.TIMESTAMP) .withMaxResults(maxResults) .withNextToken(paginationToken); labelDetectionResult = rek.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData=labelDetectionResult.getVideoMetadata(); System.out.println("Format: " + videoMetaData.getFormat()); System.out.println("Codec: " + videoMetaData.getCodec()); System.out.println("Duration: " + videoMetaData.getDurationMillis()); System.out.println("FrameRate: " + videoMetaData.getFrameRate()); //Show labels, confidence and detection times List<LabelDetection> detectedLabels= labelDetectionResult.getLabels(); for (LabelDetection detectedLabel: detectedLabels) { long seconds=detectedLabel.getTimestamp(); Label label=detectedLabel.getLabel(); System.out.println("Millisecond: " + Long.toString(seconds) + " "); System.out.println(" Label:" + label.getName()); System.out.println(" Confidence:" + detectedLabel.getLabel().getConfidence().toString()); List<Instance> instances = label.getInstances(); System.out.println(" Instances of " + label.getName()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.getConfidence().toString()); System.out.println(" Bounding box: " + instance.getBoundingBox().toString()); } } System.out.println(" Parent labels for " + label.getName() + ":"); List<Parent> parents = label.getParents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.getName()); } } System.out.println(); } } while (labelDetectionResult !=null && labelDetectionResult.getNextToken() != null); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonRekognitionTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonRekognitionQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } }
-
- Python
-
在函数
main
中:-
将
roleArn
替换为您在配置 Amazon Rekognition Video的步骤 7 中创建的 IAM 服务角色的 ARN。 -
将
amzn-s3-demo-bucket
和video
的值替换为您在步骤 2 中指定的存储桶和视频文件名。 -
将创建 Rekognition 会话的行中的
profile_name
值替换为您的开发人员资料的名称。 -
您还可以在设置参数中包含过滤条件。例如,可以在所需值列表旁边使用
LabelsInclusionFilter
或LabelsExclusionFilter
。在下面的代码中,您可以取消对Features
和Settings
部分的注释,并提供自己的值,将返回的结果限制在您感兴趣的标签上。 -
在对
GetLabelDetection
的调用中,您可以为SortBy
和AggregateBy
参数提供值。要按时间排序,请将SortBy
输入参数的值设置为TIMESTAMP
。要按实体排序,请将SortBy
输入参数与适用于您执行的操作的值结合使用。要按时间戳汇总结果,请将AggregateBy
参数的值设置为TIMESTAMPS
。要按视频片段进行汇总,请使用SEGMENTS
。
## Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 import json import sys import time class VideoDetect: jobId = '' roleArn = '' bucket = '' video = '' startJobId = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, video, client, rek, sqs, sns): self.roleArn = role self.bucket = bucket self.video = video self.client = client self.rek = rek self.sqs = sqs self.sns = sns def GetSQSMessageSuccess(self): jobFound = False succeeded = False dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) rekMessage = json.loads(notification['Message']) print(rekMessage['JobId']) print(rekMessage['Status']) if rekMessage['JobId'] == self.startJobId: print('Matching Job Found:' + rekMessage['JobId']) jobFound = True if (rekMessage['Status'] == 'SUCCEEDED'): succeeded = True self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(rekMessage['JobId']) + ' : ' + self.startJobId) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) return succeeded def StartLabelDetection(self): response = self.rek.start_label_detection(Video={'S3Object': {'Bucket': self.bucket, 'Name': self.video}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}, MinConfidence=90, # Filtration options, uncomment and add desired labels to filter returned labels # Features=['GENERAL_LABELS'], # Settings={ # 'GeneralLabels': { # 'LabelInclusionFilters': ['Clothing'] # }} ) self.startJobId = response['JobId'] print('Start Job Id: ' + self.startJobId) def GetLabelDetectionResults(self): maxResults = 10 paginationToken = '' finished = False while finished == False: response = self.rek.get_label_detection(JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken, SortBy='TIMESTAMP', AggregateBy="TIMESTAMPS") print('Codec: ' + response['VideoMetadata']['Codec']) print('Duration: ' + str(response['VideoMetadata']['DurationMillis'])) print('Format: ' + response['VideoMetadata']['Format']) print('Frame rate: ' + str(response['VideoMetadata']['FrameRate'])) print() for labelDetection in response['Labels']: label = labelDetection['Label'] print("Timestamp: " + str(labelDetection['Timestamp'])) print(" Label: " + label['Name']) print(" Confidence: " + str(label['Confidence'])) print(" Instances:") for instance in label['Instances']: print(" Confidence: " + str(instance['Confidence'])) print(" Bounding box") print(" Top: " + str(instance['BoundingBox']['Top'])) print(" Left: " + str(instance['BoundingBox']['Left'])) print(" Width: " + str(instance['BoundingBox']['Width'])) print(" Height: " + str(instance['BoundingBox']['Height'])) print() print() print("Parents:") for parent in label['Parents']: print(" " + parent['Name']) print("Aliases:") for alias in label['Aliases']: print(" " + alias['Name']) print("Categories:") for category in label['Categories']: print(" " + category['Name']) print("----------") print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonRekognitionExample" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonRekognitionQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) def main(): roleArn = 'role-arn' bucket = 'bucket-name' video = 'video-name' session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') rek = boto3.client('rekognition') sqs = boto3.client('sqs') sns = boto3.client('sns') analyzer = VideoDetect(roleArn, bucket, video, client, rek, sqs, sns) analyzer.CreateTopicandQueue() analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess() == True: analyzer.GetLabelDetectionResults() analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
-
- Node.Js
-
请看下面的示例代码:
-
将
REGION
的值替换为您账户的运营区域名称。 -
将
amzn-s3-demo-bucket
的值替换为包含您的视频文件的 Amazon S3 存储桶的名称。 -
使用您 Amazon S3 存储桶的视频文件名称替换
videoName
的值。 -
将创建 Rekognition 会话的行中的
profile_name
值替换为您的开发人员资料的名称。 -
将
roleArn
替换为您在配置 Amazon Rekognition Video的步骤 7 中创建的 IAM 服务角色的 ARN。
import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { RekognitionClient, StartLabelDetectionCommand, GetLabelDetectionCommand } from "@aws-sdk/client-rekognition"; import { stdout } from "process"; import {fromIni} from '@aws-sdk/credential-providers'; // Set the AWS Region. const REGION = "region-name"; //e.g. "us-east-1" const profileName = "profile-name" // Create SNS service object. const sqsClient = new SQSClient({ region: REGION, credentials: fromIni({profile: profileName,}), }); const snsClient = new SNSClient({ region: REGION, credentials: fromIni({profile: profileName,}), }); const rekClient = new RekognitionClient({region: REGION, credentials: fromIni({profile: profileName,}), }); // Set bucket and video variables const bucket = "bucket-name"; const videoName = "video-name"; const roleArn = "role-arn" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonRekognitionExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonRekognitionQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } }; const startLabelDetection = async (roleArn, snsTopicArn) => { try { //Initiate label detection and update value of startJobId with returned Job ID const labelDetectionResponse = await rekClient.send(new StartLabelDetectionCommand({Video:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})); startJobId = labelDetectionResponse.JobId console.log(`JobID: ${startJobId}`) return startJobId } catch (err) { console.log("Error", err); } }; const getLabelDetectionResults = async(startJobId) => { console.log("Retrieving Label Detection results") // Set max results, paginationToken and finished will be updated depending on response values var maxResults = 10 var paginationToken = '' var finished = false // Begin retrieving label detection results while (finished == false){ var response = await rekClient.send(new GetLabelDetectionCommand({JobId: startJobId, MaxResults: maxResults, NextToken: paginationToken, SortBy:'TIMESTAMP'})) // Log metadata console.log(`Codec: ${response.VideoMetadata.Codec}`) console.log(`Duration: ${response.VideoMetadata.DurationMillis}`) console.log(`Format: ${response.VideoMetadata.Format}`) console.log(`Frame Rate: ${response.VideoMetadata.FrameRate}`) console.log() // For every detected label, log label, confidence, bounding box, and timestamp response.Labels.forEach(labelDetection => { var label = labelDetection.Label console.log(`Timestamp: ${labelDetection.Timestamp}`) console.log(`Label: ${label.Name}`) console.log(`Confidence: ${label.Confidence}`) console.log("Instances:") label.Instances.forEach(instance =>{ console.log(`Confidence: ${instance.Confidence}`) console.log("Bounding Box:") console.log(`Top: ${instance.Confidence}`) console.log(`Left: ${instance.Confidence}`) console.log(`Width: ${instance.Confidence}`) console.log(`Height: ${instance.Confidence}`) console.log() }) console.log() // Log parent if found console.log(" Parents:") label.Parents.forEach(parent =>{ console.log(` ${parent.Name}`) }) console.log() // Searh for pagination token, if found, set variable to next token if (String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } }) } } // Checks for status of job completion const getSQSMessageSuccess = async(sqsQueueUrl, startJobId) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 // while not found, continue to poll for response while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } } return succeeded } catch(err) { console.log("Error", err); } }; // Start label detection job, sent status notification, check for success status // Retrieve results if status is "SUCEEDED", delete notification queue and topic const runLabelDetectionAndGetResults = async () => { try { const sqsAndTopic = await createTopicandQueue(); const startLabelDetectionRes = await startLabelDetection(roleArn, sqsAndTopic[1]); const getSQSMessageStatus = await getSQSMessageSuccess(sqsAndTopic[0], startLabelDetectionRes) console.log(getSQSMessageSuccess) if (getSQSMessageSuccess){ console.log("Retrieving results:") const results = await getLabelDetectionResults(startLabelDetectionRes) } const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsAndTopic[0]})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: sqsAndTopic[1]})); console.log("Successfully deleted.") } catch (err) { console.log("Error", err); } }; runLabelDetectionAndGetResults()
-
- Java V2
-
此代码取自 AWS 文档 SDK 示例 GitHub 存储库。请在此处
查看完整示例。 import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; //snippet-end:[rekognition.java2.recognize_video_detect.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId =""; public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <video> <queueUrl> <topicArn> <roleArn>\n\n" + "Where:\n" + " bucket - The name of the bucket in which the video is located (for example, (for example, amzn-s3-demo-bucket). \n\n"+ " video - The name of the video (for example, people.mp4). \n\n" + " queueUrl- The URL of a SQS queue. \n\n" + " topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic. \n\n" + " roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use. \n\n" ; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_WEST_2) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } // snippet-start:[rekognition.java2.recognize_video_detect.main] public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy +" status is: "+status); Thread.sleep(1000); yy++; } System.out.println(startJobId +" status is: "+status); } catch(RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message: messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId)==0) { System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) GetResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else{ System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch(RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void GetResultsLabels(RekognitionClient rekClient) { int maxResults=10; String paginationToken=null; GetLabelDetectionResponse labelDetectionResult=null; try { do { if (labelDetectionResult !=null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest= GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData=labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels= labelDetectionResult.labels(); for (LabelDetection detectedLabel: detectedLabels) { long seconds=detectedLabel.timestamp(); Label label=detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult !=null && labelDetectionResult.nextToken() != null); } catch(RekognitionException e) { e.getMessage(); System.exit(1); } } // snippet-end:[rekognition.java2.recognize_video_detect.main] }
-
构建并运行代码。此操作可能需要一段时间才能完成。完成后,将显示在视频中检测到的标签的列表。有关更多信息,请参阅 检测视频中的标签。