如何使用 L SageMaker ight GBM - Amazon SageMaker

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

如何使用 L SageMaker ight GBM

你可以使用 Light GBM 作为 Amazon 的 SageMaker 内置算法。下一节介绍如何在 SageMaker Python 中GBM使用灯光SDK。有关如何使用 Amazon SageMaker Studio Classic 用户界面中的 Ligh GBM t 的信息,请参阅SageMaker JumpStart 预训练模型

  • 使用 Ligh GBM t 作为内置算法

    使用 Light GBM 内置算法构建 Light GBM 训练容器,如以下代码示例所示。你可以使用 SageMaker image_uris.retrieveAPI(或者get_image_uriAPI如果URI使用 Amaz SageMaker on Python SDK 版本 2)自动发现 Light GBM 内置算法图像。

    指定 Light GBM 图像后URI,您可以使用 Light GBM 容器使用 Estimator 构造 SageMaker 估计器API并启动训练作业。Light GBM 内置算法在脚本模式下运行,但训练脚本是为你提供的,无需替换。如果您在使用脚本模式创建 SageMaker 训练作业方面有丰富的经验,则可以整合自己的轻型GBM训练脚本。

    from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "lightgbm-classification-model", "*", "training" training_instance_type = "ml.m5.xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_multiclass/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "num_boost_round" ] = "500" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, # for distributed training, specify an instance_count greater than 1 instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "train": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )

    有关如何将 Light 设置GBM为内置算法的更多信息,请参阅以下笔记本示例。