使用 for 的 Amazon 基岩运行时示例 SDK PHP - AWS SDK for PHP

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

使用 for 的 Amazon 基岩运行时示例 SDK PHP

以下代码示例向您展示了如何使用 AWS SDK for PHP 与 Amazon Bedrock Runtime 配合使用来执行操作和实现常见场景。

场景是向您展示如何通过在一个服务中调用多个函数或与其他 AWS 服务结合来完成特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接,您可以在其中找到有关如何在上下文中设置和运行代码的说明。

场景

以下代码示例展示了如何在 Amazon Bedrock 上准备和向各种大型语言模型 (LLMs) 发送提示

SDK for PHP
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

LLMs在 Amazon Bedrock 上调用多个。

namespace BedrockRuntime; class GettingStartedWithBedrockRuntime { protected BedrockRuntimeService $bedrockRuntimeService; public function runExample() { echo "\n"; echo "---------------------------------------------------------------------\n"; echo "Welcome to the Amazon Bedrock Runtime getting started demo using PHP!\n"; echo "---------------------------------------------------------------------\n"; $bedrockRuntimeService = new BedrockRuntimeService(); $prompt = 'In one paragraph, who are you?'; echo "\nPrompt: " . $prompt; echo "\n\nAnthropic Claude:"; echo $bedrockRuntimeService->invokeClaude($prompt); echo "\n\nAI21 Labs Jurassic-2: "; echo $bedrockRuntimeService->invokeJurassic2($prompt); echo "\n---------------------------------------------------------------------\n"; $image_prompt = 'stylized picture of a cute old steampunk robot'; echo "\nImage prompt: " . $image_prompt; echo "\n\nStability.ai Stable Diffusion XL:\n"; $diffusionSeed = rand(0, 4294967295); $style_preset = 'photographic'; $base64 = $bedrockRuntimeService->invokeStableDiffusion($image_prompt, $diffusionSeed, $style_preset); $image_path = $this->saveImage($base64, 'stability.stable-diffusion-xl'); echo "The generated images have been saved to $image_path"; echo "\n\nAmazon Titan Image Generation:\n"; $titanSeed = rand(0, 2147483647); $base64 = $bedrockRuntimeService->invokeTitanImage($image_prompt, $titanSeed); $image_path = $this->saveImage($base64, 'amazon.titan-image-generator-v1'); echo "The generated images have been saved to $image_path"; } private function saveImage($base64_image_data, $model_id): string { $output_dir = "output"; if (!file_exists($output_dir)) { mkdir($output_dir); } $i = 1; while (file_exists("$output_dir/$model_id" . '_' . "$i.png")) { $i++; } $image_data = base64_decode($base64_image_data); $file_path = "$output_dir/$model_id" . '_' . "$i.png"; $file = fopen($file_path, 'wb'); fwrite($file, $image_data); fclose($file); return $file_path; } }

AI21实验室侏罗纪-2

以下代码示例演示如何使用调用模型向 AI21 Labs Jurassic-2 发送短信。API

SDK for PHP
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

使用调用模型API发送短信。

public function invokeJurassic2($prompt) { # The different model providers have individual request and response formats. # For the format, ranges, and default values for AI21 Labs Jurassic-2, refer to: # https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-jurassic2.html $completion = ""; try { $modelId = 'ai21.j2-mid-v1'; $body = [ 'prompt' => $prompt, 'temperature' => 0.5, 'maxTokens' => 200, ]; $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $completion = $response_body->completions[0]->data->text; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $completion; }
  • 有关API详细信息,请参阅 “AWS SDK for PHP API参考 InvokeModel” 中的。

Amazon Titan Image Generator

以下代码示例展示了如何在 Amazon Bedrock 上调用 Amazon Titan Image 来生成图像。

SDK for PHP
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

使用 Amazon Titan 图像生成器创建图片。

public function invokeTitanImage(string $prompt, int $seed) { // The different model providers have individual request and response formats. // For the format, ranges, and default values for Titan Image models refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-image.html $base64_image_data = ""; try { $modelId = 'amazon.titan-image-generator-v1'; $request = json_encode([ 'taskType' => 'TEXT_IMAGE', 'textToImageParams' => [ 'text' => $prompt ], 'imageGenerationConfig' => [ 'numberOfImages' => 1, 'quality' => 'standard', 'cfgScale' => 8.0, 'height' => 512, 'width' => 512, 'seed' => $seed ] ]); $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => $request, 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->images[0]; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • 有关API详细信息,请参阅 “AWS SDK for PHP API参考 InvokeModel” 中的。

Anthropic Claude

以下代码示例显示了如何使用调用模型向 Anthropic Claude 发送短信。API

SDK for PHP
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

调用 Anthropic Claude 2 基础模型以生成文本。

public function invokeClaude($prompt) { // The different model providers have individual request and response formats. // For the format, ranges, and default values for Anthropic Claude, refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html $completion = ""; try { $modelId = 'anthropic.claude-v2'; // Claude requires you to enclose the prompt as follows: $prompt = "\n\nHuman: {$prompt}\n\nAssistant:"; $body = [ 'prompt' => $prompt, 'max_tokens_to_sample' => 200, 'temperature' => 0.5, 'stop_sequences' => ["\n\nHuman:"], ]; $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $completion = $response_body->completion; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $completion; }
  • 有关API详细信息,请参阅 “AWS SDK for PHP API参考 InvokeModel” 中的。

Stable Diffusion

以下代码示例展示了如何在 Amazon Bedrock 上调用 Stability.ai Stable Diffusion XL 来生成图像。

SDK for PHP
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

使用稳定扩散创建图像。

public function invokeStableDiffusion(string $prompt, int $seed, string $style_preset) { // The different model providers have individual request and response formats. // For the format, ranges, and available style_presets of Stable Diffusion models refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-stability-diffusion.html $base64_image_data = ""; try { $modelId = 'stability.stable-diffusion-xl-v1'; $body = [ 'text_prompts' => [ ['text' => $prompt] ], 'seed' => $seed, 'cfg_scale' => 10, 'steps' => 30 ]; if ($style_preset) { $body['style_preset'] = $style_preset; } $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->artifacts[0]->base64; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • 有关API详细信息,请参阅 “AWS SDK for PHP API参考 InvokeModel” 中的。