在 Python 中开发 Kinesis Client Library 消费端 - Amazon Kinesis Data Streams

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

在 Python 中开发 Kinesis Client Library 消费端

注意

Kinesis 客户端库 (KCL) 版本 1.x 和 2.x 已过时。我们建议迁移到 3.x KCL 版,该版本提供了改进的性能和新功能。有关最新的KCL文档和迁移指南,请参阅使用 Kinesis 客户端库

您可以使用 Kinesis 客户端库 (KCL) 来构建用于处理来自 Kinesis 数据流的数据的应用程序。Kinesis Client Library 提供多种语言版本。本主题将讨论 Python。

KCL是一个 Java 库;对 Java 以外其他语言的支持是使用名为的多语言接口提供的MultiLangDaemon。此守护程序基于 Java,当您使用 Java 以外的KCL语言时,它会在后台运行。因此,如果您安装KCL适用于 Python 的,并完全使用 Python 编写使用者应用程序,则仍然需要在系统上安装 Java,因为 MultiLangDaemon。此外 MultiLangDaemon ,您可能需要根据自己的用例自定义一些默认设置,例如它所连接的 AWS 区域。有关 MultiLangDaemon on 的更多信息 GitHub,请转到KCL MultiLangDaemon 项目页面。

要KCL从中下载 Python GitHub,请前往 Kinesis 客户端库 (Python)。要下载 Python 使用KCL者应用程序的示例代码,请转到上KCL的 Python 示例项目页面 GitHub。

在 Python 中实现使用KCL者应用程序时,必须完成以下任务:

实现 RecordProcessor 类方法

RecordProcess 类必须扩展 RecordProcessorBase 类以实现以下方法:

initialize process_records shutdown_requested

此示例提供了可用作起点的实现。

#!/usr/bin/env python # Copyright 2014-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Amazon Software License (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/asl/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import print_function import sys import time from amazon_kclpy import kcl from amazon_kclpy.v3 import processor class RecordProcessor(processor.RecordProcessorBase): """ A RecordProcessor processes data from a shard in a stream. Its methods will be called with this pattern: * initialize will be called once * process_records will be called zero or more times * shutdown will be called if this MultiLangDaemon instance loses the lease to this shard, or the shard ends due a scaling change. """ def __init__(self): self._SLEEP_SECONDS = 5 self._CHECKPOINT_RETRIES = 5 self._CHECKPOINT_FREQ_SECONDS = 60 self._largest_seq = (None, None) self._largest_sub_seq = None self._last_checkpoint_time = None def log(self, message): sys.stderr.write(message) def initialize(self, initialize_input): """ Called once by a KCLProcess before any calls to process_records :param amazon_kclpy.messages.InitializeInput initialize_input: Information about the lease that this record processor has been assigned. """ self._largest_seq = (None, None) self._last_checkpoint_time = time.time() def checkpoint(self, checkpointer, sequence_number=None, sub_sequence_number=None): """ Checkpoints with retries on retryable exceptions. :param amazon_kclpy.kcl.Checkpointer checkpointer: the checkpointer provided to either process_records or shutdown :param str or None sequence_number: the sequence number to checkpoint at. :param int or None sub_sequence_number: the sub sequence number to checkpoint at. """ for n in range(0, self._CHECKPOINT_RETRIES): try: checkpointer.checkpoint(sequence_number, sub_sequence_number) return except kcl.CheckpointError as e: if 'ShutdownException' == e.value: # # A ShutdownException indicates that this record processor should be shutdown. This is due to # some failover event, e.g. another MultiLangDaemon has taken the lease for this shard. # print('Encountered shutdown exception, skipping checkpoint') return elif 'ThrottlingException' == e.value: # # A ThrottlingException indicates that one of our dependencies is is over burdened, e.g. too many # dynamo writes. We will sleep temporarily to let it recover. # if self._CHECKPOINT_RETRIES - 1 == n: sys.stderr.write('Failed to checkpoint after {n} attempts, giving up.\n'.format(n=n)) return else: print('Was throttled while checkpointing, will attempt again in {s} seconds' .format(s=self._SLEEP_SECONDS)) elif 'InvalidStateException' == e.value: sys.stderr.write('MultiLangDaemon reported an invalid state while checkpointing.\n') else: # Some other error sys.stderr.write('Encountered an error while checkpointing, error was {e}.\n'.format(e=e)) time.sleep(self._SLEEP_SECONDS) def process_record(self, data, partition_key, sequence_number, sub_sequence_number): """ Called for each record that is passed to process_records. :param str data: The blob of data that was contained in the record. :param str partition_key: The key associated with this recod. :param int sequence_number: The sequence number associated with this record. :param int sub_sequence_number: the sub sequence number associated with this record. """ #################################### # Insert your processing logic here #################################### self.log("Record (Partition Key: {pk}, Sequence Number: {seq}, Subsequence Number: {sseq}, Data Size: {ds}" .format(pk=partition_key, seq=sequence_number, sseq=sub_sequence_number, ds=len(data))) def should_update_sequence(self, sequence_number, sub_sequence_number): """ Determines whether a new larger sequence number is available :param int sequence_number: the sequence number from the current record :param int sub_sequence_number: the sub sequence number from the current record :return boolean: true if the largest sequence should be updated, false otherwise """ return self._largest_seq == (None, None) or sequence_number > self._largest_seq[0] or \ (sequence_number == self._largest_seq[0] and sub_sequence_number > self._largest_seq[1]) def process_records(self, process_records_input): """ Called by a KCLProcess with a list of records to be processed and a checkpointer which accepts sequence numbers from the records to indicate where in the stream to checkpoint. :param amazon_kclpy.messages.ProcessRecordsInput process_records_input: the records, and metadata about the records. """ try: for record in process_records_input.records: data = record.binary_data seq = int(record.sequence_number) sub_seq = record.sub_sequence_number key = record.partition_key self.process_record(data, key, seq, sub_seq) if self.should_update_sequence(seq, sub_seq): self._largest_seq = (seq, sub_seq) # # Checkpoints every self._CHECKPOINT_FREQ_SECONDS seconds # if time.time() - self._last_checkpoint_time > self._CHECKPOINT_FREQ_SECONDS: self.checkpoint(process_records_input.checkpointer, str(self._largest_seq[0]), self._largest_seq[1]) self._last_checkpoint_time = time.time() except Exception as e: self.log("Encountered an exception while processing records. Exception was {e}\n".format(e=e)) def lease_lost(self, lease_lost_input): self.log("Lease has been lost") def shard_ended(self, shard_ended_input): self.log("Shard has ended checkpointing") shard_ended_input.checkpointer.checkpoint() def shutdown_requested(self, shutdown_requested_input): self.log("Shutdown has been requested, checkpointing.") shutdown_requested_input.checkpointer.checkpoint() if __name__ == "__main__": kcl_process = kcl.KCLProcess(RecordProcessor()) kcl_process.run()

修改配置属性

该示例提供了配置属性的默认值,如以下脚本所示。您可使用自己的值覆盖任何这些属性。

# The script that abides by the multi-language protocol. This script will # be executed by the MultiLangDaemon, which will communicate with this script # over STDIN and STDOUT according to the multi-language protocol. executableName = sample_kclpy_app.py # The name of an Amazon Kinesis stream to process. streamName = words # Used by the KCL as the name of this application. Will be used as the name # of an Amazon DynamoDB table which will store the lease and checkpoint # information for workers with this application name applicationName = PythonKCLSample # Users can change the credentials provider the KCL will use to retrieve credentials. # The DefaultAWSCredentialsProviderChain checks several other providers, which is # described here: # http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/DefaultAWSCredentialsProviderChain.html AWSCredentialsProvider = DefaultAWSCredentialsProviderChain # Appended to the user agent of the KCL. Does not impact the functionality of the # KCL in any other way. processingLanguage = python/2.7 # Valid options at TRIM_HORIZON or LATEST. # See http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#API_GetShardIterator_RequestSyntax initialPositionInStream = TRIM_HORIZON # The following properties are also available for configuring the KCL Worker that is created # by the MultiLangDaemon. # The KCL defaults to us-east-1 #regionName = us-east-1 # Fail over time in milliseconds. A worker which does not renew it's lease within this time interval # will be regarded as having problems and it's shards will be assigned to other workers. # For applications that have a large number of shards, this msy be set to a higher number to reduce # the number of DynamoDB IOPS required for tracking leases #failoverTimeMillis = 10000 # A worker id that uniquely identifies this worker among all workers using the same applicationName # If this isn't provided a MultiLangDaemon instance will assign a unique workerId to itself. #workerId = # Shard sync interval in milliseconds - e.g. wait for this long between shard sync tasks. #shardSyncIntervalMillis = 60000 # Max records to fetch from Kinesis in a single GetRecords call. #maxRecords = 10000 # Idle time between record reads in milliseconds. #idleTimeBetweenReadsInMillis = 1000 # Enables applications flush/checkpoint (if they have some data "in progress", but don't get new data for while) #callProcessRecordsEvenForEmptyRecordList = false # Interval in milliseconds between polling to check for parent shard completion. # Polling frequently will take up more DynamoDB IOPS (when there are leases for shards waiting on # completion of parent shards). #parentShardPollIntervalMillis = 10000 # Cleanup leases upon shards completion (don't wait until they expire in Kinesis). # Keeping leases takes some tracking/resources (e.g. they need to be renewed, assigned), so by default we try # to delete the ones we don't need any longer. #cleanupLeasesUponShardCompletion = true # Backoff time in milliseconds for Amazon Kinesis Client Library tasks (in the event of failures). #taskBackoffTimeMillis = 500 # Buffer metrics for at most this long before publishing to CloudWatch. #metricsBufferTimeMillis = 10000 # Buffer at most this many metrics before publishing to CloudWatch. #metricsMaxQueueSize = 10000 # KCL will validate client provided sequence numbers with a call to Amazon Kinesis before checkpointing for calls # to RecordProcessorCheckpointer#checkpoint(String) by default. #validateSequenceNumberBeforeCheckpointing = true # The maximum number of active threads for the MultiLangDaemon to permit. # If a value is provided then a FixedThreadPool is used with the maximum # active threads set to the provided value. If a non-positive integer or no # value is provided a CachedThreadPool is used. #maxActiveThreads = 0

应用程序名称

KCL需要的应用程序名称在您的应用程序和同一区域的 Amazon DynamoDB 表中必须是唯一的。KCL 通过以下方法使用应用程序名称配置值:

  • 假定与此应用程序名称关联的所有工作线程在同一个流上一起运行。这些工作线程可分布在多个实例中。如果您运行相同应用程序代码的另一个实例,但使用不同的应用程序名称,则会将第二个实例KCL视为也在同一流上运行的完全独立的应用程序。

  • 使用应用程序名称KCL创建一个 DynamoDB 表,并使用该表维护应用程序的状态信息(例如检查点和工作分片映射)。每个应用程序都有自己的 DynamoDB 表。有关更多信息,请参阅 使用租赁表跟踪使用者应用程序处理的KCL分片

凭证

您必须将您的 AWS 证书提供给默认凭证提供者链中的一个凭证提供商。可以使用 AWSCredentialsProvider 属性设置凭证提供程序。如果您在 Amazon EC2 实例上运行使用者应用程序,我们建议您为该实例配置一个IAM角色。 AWS 反映与此IAM角色关联的权限的证书可通过实例元数据提供给实例上的应用程序。这是管理在EC2实例上运行的使用者应用程序的凭证的最安全的方式。