使用 的 Amazon Comprehend 範例 AWS CLI - AWS Command Line Interface

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 的 Amazon Comprehend 範例 AWS CLI

下列程式碼範例示範如何搭配 Amazon Comprehend AWS Command Line Interface 使用 來執行動作和實作常見案例。

Actions 是大型程式的程式碼摘錄,必須在內容中執行。雖然動作會示範如何呼叫個別服務函數,但您可以在其相關案例中查看內容中的動作。

每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。

主題

動作

下列程式碼範例示範如何使用 batch-detect-dominant-language

AWS CLI

偵測多個輸入文字的主要語言

下列batch-detect-dominant-language範例會分析多個輸入文字,並傳回每個文字的主要語言。每個預測也會輸出預先訓練的模型可信度分數。

aws comprehend batch-detect-dominant-language \ --text-list "Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

輸出:

{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的慣用語言

下列程式碼範例示範如何使用 batch-detect-entities

AWS CLI

從多個輸入文字偵測實體

下列batch-detect-entities範例會分析多個輸入文字,並傳回每個輸入文字的具名實體。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend batch-detect-entities \ --language-code en \ --text-list "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

輸出:

{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的實體

下列程式碼範例示範如何使用 batch-detect-key-phrases

AWS CLI

偵測多個文字輸入的金鑰片語

下列batch-detect-key-phrases範例會分析多個輸入文字,並傳回每個輸入文字的金鑰名詞片語。也會輸出每個預測的預先訓練模型可信度分數。

aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list "Hello Zhang Wei, I am John, writing to you about the trip for next Saturday." "Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st." "Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."

輸出:

{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的關鍵詞

下列程式碼範例示範如何使用 batch-detect-sentiment

AWS CLI

偵測多個輸入文字的普遍情緒

下列batch-detect-sentiment範例會分析多個輸入文字,並傳回主流情緒 (POSITIVEMIXEDNEUTRALNEGATIVE,每個情緒)。

aws comprehend batch-detect-sentiment \ --text-list "That movie was very boring, I can't believe it was over four hours long." "It is a beautiful day for hiking today." "My meal was okay, I'm excited to try other restaurants." \ --language-code en

輸出:

{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的情緒

下列程式碼範例示範如何使用 batch-detect-syntax

AWS CLI

檢查多個輸入文字中單詞的語法和部分語音

下列batch-detect-syntax範例會分析多個輸入文字的語法,並傳回語音的不同部分。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend batch-detect-syntax \ --text-list "It is a beautiful day." "Can you please pass the salt?" "Please pay the bill before the 31st." \ --language-code en

輸出:

{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的語法分析

下列程式碼範例示範如何使用 batch-detect-targeted-sentiment

AWS CLI

偵測多個輸入文字的情緒和每個具名實體

下列batch-detect-targeted-sentiment範例會分析多個輸入文字,並傳回具名實體,以及連接至每個實體的普遍情緒。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list "That movie was really boring, the original was way more entertaining" "The trail is extra beautiful today." "My meal was just okay."

輸出:

{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的目標情緒

下列程式碼範例示範如何使用 classify-document

AWS CLI

使用模型特有端點對文件進行分類

下列classify-document範例會分類具有自訂模型端點的文件。此範例中的模型在資料集上接受訓練,該資料集包含標記為垃圾郵件或非垃圾郵件,或 "ham" 的簡訊訊息。

aws comprehend classify-document \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint \ --text "CONGRATULATIONS! TXT 1235550100 to win $5000"

輸出:

{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂分類

  • 如需API詳細資訊,請參閱 命令參考 ClassifyDocument中的 。 AWS CLI

下列程式碼範例示範如何使用 contains-pii-entities

AWS CLI

分析PII資訊是否存在的輸入文字

下列contains-pii-entities範例會分析輸入文字中是否存在個人識別資訊 (PII),並傳回已識別PII實體類型的標籤,例如名稱、地址、銀行帳戶號碼或電話號碼。

aws comprehend contains-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

輸出:

{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的個人識別資訊 (PII)

下列程式碼範例示範如何使用 create-dataset

AWS CLI

若要建立飛輪資料集

下列create-dataset範例會建立飛輪的資料集。此資料集將用作--dataset-type標籤指定的其他訓練資料。

aws comprehend create-dataset \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity \ --dataset-name example-dataset \ --dataset-type "TRAIN" \ --input-data-config file://inputConfig.json

file://inputConfig.json 的內容:

{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/training-data.csv" } }

輸出:

{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 CreateDataset中的 。 AWS CLI

下列程式碼範例示範如何使用 create-document-classifier

AWS CLI

建立文件分類器以分類文件

下列create-document-classifier範例會開始文件分類器模型的訓練程序。訓練資料檔案 training.csv位於 --input-data-config標籤。 training.csv 是兩欄文件,其中標籤或 分類提供於第一欄,文件則提供於第二欄。

aws comprehend create-document-classifier \ --document-classifier-name example-classifier \ --data-access-arn arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --language-code en

輸出:

{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂分類

下列程式碼範例示範如何使用 create-endpoint

AWS CLI

為自訂模型建立端點

下列create-endpoint範例會為先前訓練的自訂模型建立同步推論的端點。

aws comprehend create-endpoint \ --endpoint-name example-classifier-endpoint-1 \ --model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier \ --desired-inference-units 1

輸出:

{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的管理 Amazon Comprehend 端點Amazon Comprehend

  • 如需API詳細資訊,請參閱 命令參考 CreateEndpoint中的 。 AWS CLI

下列程式碼範例示範如何使用 create-entity-recognizer

AWS CLI

若要建立自訂實體識別器

下列create-entity-recognizer範例會開始自訂實體識別器模型的訓練程序。此範例使用包含訓練文件、 raw_text.csv和CSV實體清單CSV的檔案entity_list.csv來訓練模型。 entity-list.csv包含下列資料欄:文字和類型。

aws comprehend create-entity-recognizer \ --recognizer-name example-entity-recognizer --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --input-data-config "EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_text.csv},EntityList={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv}" --language-code en

輸出:

{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂實體識別

下列程式碼範例示範如何使用 create-flywheel

AWS CLI

建立飛輪

下列create-flywheel範例會建立飛輪,以協調文件分類或實體識別模型的持續訓練。此範例中的飛輪是用來管理--active-model-arn標籤指定的現有訓練模型。飛輪建立時,會在--input-data-lake標籤建立資料湖。

aws comprehend create-flywheel \ --flywheel-name example-flywheel \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1 \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --data-lake-s3-uri "s3://DOC-EXAMPLE-BUCKET"

輸出:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 CreateFlywheel中的 。 AWS CLI

下列程式碼範例示範如何使用 delete-document-classifier

AWS CLI

若要刪除自訂文件分類器

下列delete-document-classifier範例會刪除自訂文件分類器模型。

aws comprehend delete-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

此命令不會產生輸出。

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點Amazon Comprehend

下列程式碼範例示範如何使用 delete-endpoint

AWS CLI

刪除自訂模型的端點

下列delete-endpoint範例會刪除模型特定的端點。必須刪除所有端點,才能刪除模型。

aws comprehend delete-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1

此命令不會產生輸出。

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點Amazon Comprehend

  • 如需API詳細資訊,請參閱 命令參考 DeleteEndpoint中的 。 AWS CLI

下列程式碼範例示範如何使用 delete-entity-recognizer

AWS CLI

若要刪除自訂實體識別器模型

下列delete-entity-recognizer範例會刪除自訂實體識別器模型。

aws comprehend delete-entity-recognizer \ --entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1

此命令不會產生輸出。

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點Amazon Comprehend

下列程式碼範例示範如何使用 delete-flywheel

AWS CLI

刪除飛輪

下列delete-flywheel範例會刪除飛輪。不會刪除與飛輪相關聯的資料湖或模型。

aws comprehend delete-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 DeleteFlywheel中的 。 AWS CLI

下列程式碼範例示範如何使用 delete-resource-policy

AWS CLI

若要刪除資源型政策

下列delete-resource-policy範例會從 Amazon Comprehend 資源刪除資源型政策。

aws comprehend delete-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的在AWS 帳戶之間複製自訂模型

下列程式碼範例示範如何使用 describe-dataset

AWS CLI

描述飛輪資料集

下列describe-dataset範例會取得飛輪資料集的屬性。

aws comprehend describe-dataset \ --dataset-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset

輸出:

{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 DescribeDataset中的 。 AWS CLI

下列程式碼範例示範如何使用 describe-document-classification-job

AWS CLI

描述文件分類任務

下列describe-document-classification-job範例會取得非同步文件分類任務的屬性。

aws comprehend describe-document-classification-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂分類

下列程式碼範例示範如何使用 describe-document-classifier

AWS CLI

描述文件分類器

下列describe-document-classifier範例會取得自訂文件分類器模型的屬性。

aws comprehend describe-document-classifier \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1

輸出:

{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的建立和管理自訂模型

下列程式碼範例示範如何使用 describe-dominant-language-detection-job

AWS CLI

描述主要語言偵測偵測任務。

下列describe-dominant-language-detection-job範例會取得非同步主要語言偵測任務的屬性。

aws comprehend describe-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-endpoint

AWS CLI

描述特定端點

下列describe-endpoint範例會取得模型特定端點的屬性。

aws comprehend describe-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint

輸出:

{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點Amazon Comprehend

  • 如需API詳細資訊,請參閱 命令參考 DescribeEndpoint中的 。 AWS CLI

下列程式碼範例示範如何使用 describe-entities-detection-job

AWS CLI

描述實體偵測任務

下列describe-entities-detection-job範例會取得非同步實體偵測任務的屬性。

aws comprehend describe-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-entity-recognizer

AWS CLI

描述實體識別符

下列describe-entity-recognizer範例會取得自訂實體識別器模型的屬性。

aws comprehend describe-entity-recognizer \ entity-recognizer-arn arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1

輸出:

{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂實體識別

下列程式碼範例示範如何使用 describe-events-detection-job

AWS CLI

描述事件偵測任務。

下列describe-events-detection-job範例會取得非同步事件偵測任務的屬性。

aws comprehend describe-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-flywheel-iteration

AWS CLI

描述飛輪反覆運算

下列describe-flywheel-iteration範例會取得飛輪反覆運算的屬性。

aws comprehend describe-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel \ --flywheel-iteration-id 20232222AEXAMPLE

輸出:

{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

下列程式碼範例示範如何使用 describe-flywheel

AWS CLI

描述飛輪

下列describe-flywheel範例會取得飛輪的屬性。在此範例中,與飛輪相關聯的模型是自訂分類器模型,其經過訓練,可將文件分類為垃圾郵件或非垃圾郵件,或「ham」。

aws comprehend describe-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

輸出:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 DescribeFlywheel中的 。 AWS CLI

下列程式碼範例示範如何使用 describe-key-phrases-detection-job

AWS CLI

描述關鍵片語偵測任務

下列describe-key-phrases-detection-job範例會取得非同步金鑰片語偵測任務的屬性。

aws comprehend describe-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-pii-entities-detection-job

AWS CLI

描述PII實體偵測任務

下列describe-pii-entities-detection-job範例會取得非同步 pii 實體偵測任務的屬性。

aws comprehend describe-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-resource-policy

AWS CLI

描述附加至模型的資源政策

下列describe-resource-policy範例會取得連接至模型之資源型政策的屬性。

aws comprehend describe-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

輸出:

{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的在AWS 帳戶之間複製自訂模型

下列程式碼範例示範如何使用 describe-sentiment-detection-job

AWS CLI

描述情緒偵測任務

下列describe-sentiment-detection-job範例會取得非同步情緒偵測任務的屬性。

aws comprehend describe-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-targeted-sentiment-detection-job

AWS CLI

描述目標情緒偵測任務

下列describe-targeted-sentiment-detection-job範例會取得非同步目標情緒偵測任務的屬性。

aws comprehend describe-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 describe-topics-detection-job

AWS CLI

描述主題偵測任務

下列describe-topics-detection-job範例會取得非同步主題偵測任務的屬性。

aws comprehend describe-topics-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 detect-dominant-language

AWS CLI

偵測輸入文字的主要語言

以下內容會detect-dominant-language分析輸入文字並識別慣用語言。也會輸出預先訓練模型的可信度分數。

aws comprehend detect-dominant-language \ --text "It is a beautiful day in Seattle."

輸出:

{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的慣用語言

下列程式碼範例示範如何使用 detect-entities

AWS CLI

在輸入文字中偵測具名實體

下列detect-entities範例會分析輸入文字並傳回具名實體。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend detect-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

輸出:

{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的實體

  • 如需API詳細資訊,請參閱 命令參考 DetectEntities中的 。 AWS CLI

下列程式碼範例示範如何使用 detect-key-phrases

AWS CLI

若要偵測輸入文字中的金鑰片語

下列detect-key-phrases範例會分析輸入文字,並識別金鑰名詞片語。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend detect-key-phrases \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

輸出:

{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的關鍵詞

  • 如需API詳細資訊,請參閱 命令參考 DetectKeyPhrases中的 。 AWS CLI

下列程式碼範例示範如何使用 detect-pii-entities

AWS CLI

若要偵測輸入文字中的 pii 實體

下列detect-pii-entities範例會分析輸入文字,並識別包含個人識別資訊的實體 (PII)。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend detect-pii-entities \ --language-code en \ --text "Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."

輸出:

{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的個人識別資訊 (PII)

下列程式碼範例示範如何使用 detect-sentiment

AWS CLI

偵測輸入文字的情緒

下列detect-sentiment範例會分析輸入文字,並傳回目前情緒的推論 (POSITIVEMIXEDNEUTRALNEGATIVE)。

aws comprehend detect-sentiment \ --language-code en \ --text "It is a beautiful day in Seattle"

輸出:

{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的情緒

  • 如需API詳細資訊,請參閱 命令參考 DetectSentiment中的 。 AWS CLI

下列程式碼範例示範如何使用 detect-syntax

AWS CLI

偵測輸入文字中的語音部分

下列detect-syntax範例會分析輸入文字的語法,並傳回語音的不同部分。每個預測也會輸出預先訓練模型的可信度分數。

aws comprehend detect-syntax \ --language-code en \ --text "It is a beautiful day in Seattle."

輸出:

{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的語法分析

  • 如需API詳細資訊,請參閱 命令參考 DetectSyntax中的 。 AWS CLI

下列程式碼範例示範如何使用 detect-targeted-sentiment

AWS CLI

在輸入文字中偵測具名實體的目標情緒

除了與每個實體相關聯的目標情緒之外,下列detect-targeted-sentiment範例會分析輸入文字並傳回具名實體。也會輸出每個預測的預先訓練模型可信度分數。

aws comprehend detect-targeted-sentiment \ --language-code en \ --text "I do not enjoy January because it is too cold but August is the perfect temperature"

輸出:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的目標情緒

下列程式碼範例示範如何使用 import-model

AWS CLI

若要匯入模型

下列import-model範例會從不同的 AWS 帳戶匯入模型。帳戶中的文件分類器模型444455556666具有資源型政策111122223333,可讓帳戶匯入模型。

aws comprehend import-model \ --source-model-arn arn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifier

輸出:

{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的在AWS 帳戶之間複製自訂模型

  • 如需API詳細資訊,請參閱 命令參考 ImportModel中的 。 AWS CLI

下列程式碼範例示範如何使用 list-datasets

AWS CLI

若要列出所有飛輪資料集

下列list-datasets範例會列出與飛輪相關聯的所有資料集。

aws comprehend list-datasets \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity

輸出:

{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 ListDatasets中的 。 AWS CLI

下列程式碼範例示範如何使用 list-document-classification-jobs

AWS CLI

列出所有文件分類任務

下列list-document-classification-jobs範例列出所有文件分類任務。

aws comprehend list-document-classification-jobs

輸出:

{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂分類

下列程式碼範例示範如何使用 list-document-classifier-summaries

AWS CLI

列出所有建立的文件分類器摘要

下列list-document-classifier-summaries範例列出所有建立的文件分類器摘要。

aws comprehend list-document-classifier-summaries

輸出:

{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的建立和管理自訂模型

下列程式碼範例示範如何使用 list-document-classifiers

AWS CLI

若要列出所有文件分類器

下列list-document-classifiers範例列出所有訓練中和訓練中文件分類器模型。

aws comprehend list-document-classifiers

輸出:

{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的建立和管理自訂模型

下列程式碼範例示範如何使用 list-dominant-language-detection-jobs

AWS CLI

列出所有主要語言偵測任務

下列list-dominant-language-detection-jobs範例列出所有進行中和已完成的非同步主要語言偵測工作。

aws comprehend list-dominant-language-detection-jobs

輸出:

{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-endpoints

AWS CLI

列出所有端點

下列list-endpoints範例會列出所有作用中模型特定的端點。

aws comprehend list-endpoints

輸出:

{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的管理 Amazon Comprehend 端點Amazon Comprehend

  • 如需API詳細資訊,請參閱 命令參考 ListEndpoints中的 。 AWS CLI

下列程式碼範例示範如何使用 list-entities-detection-jobs

AWS CLI

若要列出所有實體偵測任務

下列list-entities-detection-jobs範例列出所有非同步實體偵測任務。

aws comprehend list-entities-detection-jobs

輸出:

{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的實體

下列程式碼範例示範如何使用 list-entity-recognizer-summaries

AWS CLI

列出所有建立實體識別符的摘要

下列list-entity-recognizer-summaries範例列出所有實體識別器摘要。

aws comprehend list-entity-recognizer-summaries

輸出:

{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂實體識別

下列程式碼範例示範如何使用 list-entity-recognizers

AWS CLI

若要列出所有自訂實體識別器

下列list-entity-recognizers範例會列出所有建立的自訂實體識別符。

aws comprehend list-entity-recognizers

輸出:

{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂實體識別

下列程式碼範例示範如何使用 list-events-detection-jobs

AWS CLI

若要列出所有事件偵測任務

下列list-events-detection-jobs範例列出所有非同步事件偵測任務。

aws comprehend list-events-detection-jobs

輸出:

{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-flywheel-iteration-history

AWS CLI

若要列出所有飛輪反覆運算歷史記錄

下列list-flywheel-iteration-history範例會列出飛輪的所有迭代。

aws comprehend list-flywheel-iteration-history --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

輸出:

{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

下列程式碼範例示範如何使用 list-flywheels

AWS CLI

若要列出所有飛輪

下列list-flywheels範例列出所有建立的飛輪。

aws comprehend list-flywheels

輸出:

{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 ListFlywheels中的 。 AWS CLI

下列程式碼範例示範如何使用 list-key-phrases-detection-jobs

AWS CLI

列出所有關鍵片語偵測任務

下列list-key-phrases-detection-jobs範例會列出所有進行中和已完成的非同步金鑰片語偵測工作。

aws comprehend list-key-phrases-detection-jobs

輸出:

{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-pii-entities-detection-jobs

AWS CLI

若要列出所有 pii 實體偵測任務

下列list-pii-entities-detection-jobs範例列出所有進行中和已完成的非同步 pii 偵測任務。

aws comprehend list-pii-entities-detection-jobs

輸出:

{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-sentiment-detection-jobs

AWS CLI

列出所有情緒偵測任務

下列list-sentiment-detection-jobs範例列出所有進行中和已完成的非同步情緒偵測任務。

aws comprehend list-sentiment-detection-jobs

輸出:

{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-tags-for-resource

AWS CLI

列出資源的標籤

下列list-tags-for-resource範例列出 Amazon Comprehend 資源的標籤。

aws comprehend list-tags-for-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1

輸出:

{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的標記資源

下列程式碼範例示範如何使用 list-targeted-sentiment-detection-jobs

AWS CLI

列出所有目標情緒偵測任務

下列list-targeted-sentiment-detection-jobs範例列出所有進行中和已完成的非同步目標情緒偵測任務。

aws comprehend list-targeted-sentiment-detection-jobs

輸出:

{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 list-topics-detection-jobs

AWS CLI

若要列出所有主題偵測任務

下列list-topics-detection-jobs範例列出所有進行中和已完成的非同步主題偵測任務。

aws comprehend list-topics-detection-jobs

輸出:

{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 put-resource-policy

AWS CLI

若要連接資源型政策

下列put-resource-policy範例會將資源型政策連接至模型,以便另一個 AWS 帳戶匯入 。政策會連接到 帳戶中的模型111122223333,並允許帳戶444455556666匯入模型。

aws comprehend put-resource-policy \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --resource-policy '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'

Ouput:

{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的在AWS 帳戶之間複製自訂模型

下列程式碼範例示範如何使用 start-document-classification-job

AWS CLI

啟動文件分類任務

下列start-document-classification-job範例會啟動文件分類任務,在--input-data-config標籤指定的地址的所有檔案上使用自訂模型。在此範例中,輸入 S3 儲存貯體包含 SampleSMStext1.txtSampleSMStext2.txtSampleSMStext3.txt。此模型先前已針對垃圾郵件和非垃圾郵件的文件分類,或「ham」SMS訊息進行訓練。任務完成時, output.tar.gz 會放置在--output-data-config標籤指定的位置。 output.tar.gz包含 predictions.jsonl,其中會列出每個文件的分類。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-document-classification-job \ --job-name exampleclassificationjob \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET-INPUT/jobdata/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12

SampleSMStext1.txt 的內容:

"CONGRATULATIONS! TXT 2155550100 to win $5000"

SampleSMStext2.txt 的內容:

"Hi, when do you want me to pick you up from practice?"

SampleSMStext3.txt 的內容:

"Plz send bank account # to 2155550100 to claim prize!!"

輸出:

{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }

predictions.jsonl 的內容:

{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂分類

下列程式碼範例示範如何使用 start-dominant-language-detection-job

AWS CLI

若要啟動非同步語言偵測工作

下列start-dominant-language-detection-job範例會針對位於--input-data-config標籤指定地址的所有檔案啟動非同步語言偵測工作。此範例中的 S3 儲存貯體包含 Sampletext1.txt。任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含每個文字檔案output.txt的主要語言,以及每個預測預先訓練模型的可信度分數。

aws comprehend start-dominant-language-detection-job \ --job-name example_language_analysis_job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Sampletext1.txt 的內容:

"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

output.txt 的內容:

{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-entities-detection-job

AWS CLI

範例 1:使用預先訓練的模型啟動標準實體偵測任務

下列start-entities-detection-job範例會針對位於--input-data-config標籤指定地址的所有檔案啟動非同步實體偵測工作。此範例中的 S3 儲存貯體包含 Sampletext1.txtSampletext2.txtSampletext3.txt。任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含output.txt列出每個文字檔案中偵測到的所有具名實體,以及每個預測的預先訓練模型可信度分數。Json 輸出會列印在每個輸入檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-entities-detection-job \ --job-name entitiestest \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

Sampletext1.txt 的內容:

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Sampletext2.txt 的內容:

"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Sampletext3.txt 的內容:

"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

內容output.txt具有行縮排以供讀取:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

範例 2:啟動自訂實體偵測任務

下列start-entities-detection-job範例會針對位於--input-data-config標籤指定地址的所有檔案啟動非同步自訂實體偵測工作。在此範例中,此範例中的 S3 儲存貯體包含 SampleFeedback1.txtSampleFeedback2.txtSampleFeedback3.txt。實體識別器模型已針對客戶支援意見回饋進行訓練,以識別裝置名稱。當任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含 output.txt,列出每個文字檔案中偵測到的所有具名實體,以及每個預測預先訓練模型的可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-entities-detection-job \ --job-name customentitiestest \ --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer" \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/jobdata/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"

SampleFeedback1.txt 的內容:

"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"

SampleFeedback2.txt 的內容:

"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"

SampleFeedback3.txt 的內容:

"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"

輸出:

{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }

內容output.txt具有行縮排以供讀取:

{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的自訂實體識別

下列程式碼範例示範如何使用 start-events-detection-job

AWS CLI

若要啟動非同步事件偵測任務

下列start-events-detection-job範例會針對位於--input-data-config標籤指定地址的所有檔案啟動非同步事件偵測任務。可能的目標事件類型包括 BANKRUPCTYEMPLOYMENTCORPORATE_ACQUISITIONINVESTMENT_GENERALCORPORATE_MERGERIPORIGHTS_ISSUE、、SECONDARY_OFFERINGSHELF_OFFERINGTENDER_OFFERINGSTOCK_SPLIT。此範例中的 S3 儲存貯體包含 SampleText1.txtSampleText2.txtSampleText3.txt。當任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含 SampleText1.txt.outSampleText2.txt.outSampleText3.txt.out。JSON 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-events-detection-job \ --job-name events-detection-1 \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/EventsData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole \ --language-code en \ --target-event-types "BANKRUPTCY" "EMPLOYMENT" "CORPORATE_ACQUISITION" "CORPORATE_MERGER" "INVESTMENT_GENERAL"

SampleText1.txt 的內容:

"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."

SampleText2.txt 的內容:

"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."

SampleText3.txt 的內容:

"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

內容SampleText1.txt.out具有行縮排,便於讀取:

{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }

SampleText2.txt.out 的內容:

{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }

SampleText3.txt.out 的內容:

{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-flywheel-iteration

AWS CLI

若要啟動飛輪反覆運算

下列start-flywheel-iteration範例會啟動飛輪反覆運算。此操作使用飛輪中的任何新資料集來訓練新的模型版本。

aws comprehend start-flywheel-iteration \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel

輸出:

{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

下列程式碼範例示範如何使用 start-key-phrases-detection-job

AWS CLI

啟動金鑰片語偵測任務

下列start-key-phrases-detection-job範例會針對位於--input-data-config標籤所指定地址的所有檔案,啟動非同步金鑰片語偵測工作。此範例中的 S3 儲存貯體包含 Sampletext1.txtSampletext2.txtSampletext3.txt。任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含檔案output.txt,其中包含每個文字檔案中偵測到的所有金鑰片語,以及每個預測預先訓練模型的可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-key-phrases-detection-job \ --job-name keyphrasesanalysistest1 \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" \ --language-code en

Sampletext1.txt 的內容:

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Sampletext2.txt 的內容:

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Sampletext3.txt 的內容:

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

output.txt 具有行縮排的內容以供讀取:

{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-pii-entities-detection-job

AWS CLI

啟動非同步PII偵測任務

下列start-pii-entities-detection-job範例會針對位於--input-data-config標籤所指定地址的所有檔案,啟動非同步個人識別資訊 (PII) 實體偵測工作。此範例中的 S3 儲存貯體包含 Sampletext1.txtSampletext2.txtSampletext3.txt。當任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含 SampleText1.txt.out、 和 SampleText2.txt.outSampleText3.txt.out列出每個文字檔案中的具名實體。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-pii-entities-detection-job \ --job-name entities_test \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en \ --mode ONLY_OFFSETS

Sampletext1.txt 的內容:

"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."

Sampletext2.txt 的內容:

"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "

Sampletext3.txt 的內容:

"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

SampleText1.txt.out 內容具有行縮排,便於讀取:

{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }

內容SampleText2.txt.out具有行縮排,便於讀取:

{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }

內容SampleText3.txt.out具有行縮排以供讀取:

{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-sentiment-detection-job

AWS CLI

啟動非同步情緒分析任務

下列start-sentiment-detection-job範例會針對位於--input-data-config標籤所指定地址的所有檔案,啟動非同步情緒分析偵測工作。此範例中的 S3 儲存貯體資料夾包含 SampleMovieReview1.txtSampleMovieReview2.txtSampleMovieReview3.txt。任務完成時,資料夾 output會放置在--output-data-config標籤指定的位置。資料夾包含 檔案 output.txt,其中包含每個文字檔案的普遍情緒,以及每個預測預先訓練模型的可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。

aws comprehend start-sentiment-detection-job \ --job-name example-sentiment-detection-job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

SampleMovieReview1.txt 的內容:

"The film, AnyMovie2, is fairly predictable and just okay."

SampleMovieReview2.txt 的內容:

"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

SampleMovieReview3.txt 的內容:

"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."

輸出:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

output.txt 內容包含可讀取的縮排:

{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-targeted-sentiment-detection-job

AWS CLI

啟動非同步目標情緒分析任務

下列start-targeted-sentiment-detection-job範例會針對位於--input-data-config標籤所指定地址的所有檔案,啟動非同步目標情緒分析偵測工作。此範例中的 S3 儲存貯體資料夾包含 SampleMovieReview1.txtSampleMovieReview2.txtSampleMovieReview3.txt。當任務完成時, output.tar.gz 會放置在--output-data-config標籤指定的位置。 output.tar.gz包含檔案 SampleMovieReview1.txt.outSampleMovieReview2.txt.outSampleMovieReview3.txt.out,每個檔案都包含單一輸入文字檔案的所有具名實體和相關情緒。

aws comprehend start-targeted-sentiment-detection-job \ --job-name targeted_movie_review_analysis1 \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role

SampleMovieReview1.txt 的內容:

"The film, AnyMovie, is fairly predictable and just okay."

SampleMovieReview2.txt 的內容:

"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."

SampleMovieReview3.txt 的內容:

"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."

輸出:

{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }

內容SampleMovieReview1.txt.out具有行縮排以供讀取:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }

可供讀取的SampleMovieReview2.txt.out列縮排內容:

{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }

內容SampleMovieReview3.txt.out具有行縮排以供讀取:

{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 start-topics-detection-job

AWS CLI

啟動主題偵測分析任務

下列start-topics-detection-job範例會針對位於--input-data-config標籤指定地址的所有檔案啟動非同步主題偵測工作。任務完成時,資料夾 output會放置在--ouput-data-config標籤指定的位置。 output包含 topic-terms.csv 和 doc-topics.csv。第一個輸出檔案 topic-terms.csv 是集合中的主題清單。對於每個主題,依預設,清單會包含根據其權重按主題列出的熱門詞彙。第二個檔案 列出與主題相關聯的文件doc-topics.csv,以及與該主題相關的文件比例。

aws comprehend start-topics-detection-job \ --job-name example_topics_detection_job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的主題模型

下列程式碼範例示範如何使用 stop-dominant-language-detection-job

AWS CLI

若要停止非同步主要語言偵測工作

下列stop-dominant-language-detection-job範例會停止進行中的非同步主要語言偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-dominant-language-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-entities-detection-job

AWS CLI

若要停止非同步實體偵測工作

下列stop-entities-detection-job範例會停止進行中的非同步實體偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-events-detection-job

AWS CLI

停止非同步事件偵測任務

下列stop-events-detection-job範例會停止進行中的非同步事件偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-events-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-key-phrases-detection-job

AWS CLI

若要停止非同步金鑰片語偵測工作

下列stop-key-phrases-detection-job範例會停止進行中的非同步金鑰片語偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-key-phrases-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-pii-entities-detection-job

AWS CLI

停止非同步 pii 實體偵測任務

下列stop-pii-entities-detection-job範例會停止進行中的非同步 pii 實體偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-pii-entities-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-sentiment-detection-job

AWS CLI

停止非同步情緒偵測任務

下列stop-sentiment-detection-job範例會停止進行中的非同步情緒偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-targeted-sentiment-detection-job

AWS CLI

停止非同步目標情緒偵測任務

下列stop-targeted-sentiment-detection-job範例會停止進行中的非同步目標情緒偵測工作。如果目前的任務狀態為IN_PROGRESS任務標記為終止並進入 STOP_REQUESTED 狀態。如果任務在停止之前完成,則會進入 COMPLETED 狀態。

aws comprehend stop-targeted-sentiment-detection-job \ --job-id 123456abcdeb0e11022f22a11EXAMPLE

輸出:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的 Amazon Comprehend 洞察的非同步分析Amazon Comprehend

下列程式碼範例示範如何使用 stop-training-document-classifier

AWS CLI

停止訓練文件分類器模型

下列stop-training-document-classifier範例會在進行中停止訓練文件分類器模型。

aws comprehend stop-training-document-classifier --document-classifier-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的建立和管理自訂模型

下列程式碼範例示範如何使用 stop-training-entity-recognizer

AWS CLI

停止實體識別器模型的訓練

下列stop-training-entity-recognizer範例會在進行中停止實體識別器模型的訓練。

aws comprehend stop-training-entity-recognizer --entity-recognizer-arn "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"

此命令不會產生輸出。

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的建立和管理自訂模型

下列程式碼範例示範如何使用 tag-resource

AWS CLI

範例 1:標記資源

下列tag-resource範例會將單一標籤新增至 Amazon Comprehend 資源。

aws comprehend tag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 \ --tags Key=Location,Value=Seattle

此命令沒有輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的標記資源

範例 2:將多個標籤新增至資源

下列tag-resource範例會將多個標籤新增至 Amazon Comprehend 資源。

aws comprehend tag-resource \ --resource-arn "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1" \ --tags Key=location,Value=Seattle Key=Department,Value=Finance

此命令沒有輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的標記資源

  • 如需API詳細資訊,請參閱 命令參考 TagResource中的 。 AWS CLI

下列程式碼範例示範如何使用 untag-resource

AWS CLI

範例 1:從資源中移除單一標籤

下列untag-resource範例會從 Amazon Comprehend 資源中移除單一標籤。

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的標記資源

範例 2:從資源中移除多個標籤

下列untag-resource範例會從 Amazon Comprehend 資源中移除多個標籤。

aws comprehend untag-resource \ --resource-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1 --tag-keys Location Department

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的標記資源

  • 如需API詳細資訊,請參閱 命令參考 UntagResource中的 。 AWS CLI

下列程式碼範例示範如何使用 update-endpoint

AWS CLI

範例 1:更新端點的推論單位

下列update-endpoint範例會更新端點的相關資訊。在此範例中,推論單位數量會增加。

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --desired-inference-units 2

此命令不會產生輸出。

如需詳細資訊,請參閱Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點Amazon Comprehend

範例 2:更新端點的 動作模型

下列update-endpoint範例會更新端點的相關資訊。在此範例中,作用中模型已變更。

aws comprehend update-endpoint \ --endpoint-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-new

此命令不會產生輸出。

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的管理 Amazon Comprehend 端點Amazon Comprehend

  • 如需API詳細資訊,請參閱 命令參考 UpdateEndpoint中的 。 AWS CLI

下列程式碼範例示範如何使用 update-flywheel

AWS CLI

更新飛輪組態

下列update-flywheel範例會更新飛輪組態。在此範例中,飛輪的作用中模型會更新。

aws comprehend update-flywheel \ --flywheel-arn arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1 \ --active-model-arn arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model

輸出:

{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }

如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南 中的飛輪概觀

  • 如需API詳細資訊,請參閱 命令參考 UpdateFlywheel中的 。 AWS CLI