文件 AWS SDK AWS 範例 SDK 儲存庫中有更多可用的
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
使用 的 Amazon Comprehend 範例 AWS CLI
下列程式碼範例示範如何搭配 Amazon Comprehend AWS Command Line Interface 使用 來執行動作和實作常見案例。
Actions 是大型程式的程式碼摘錄,必須在內容中執行。雖然 動作會示範如何呼叫個別服務函數,但您可以在其相關案例中查看內容中的動作。
每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。
主題
動作
下列程式碼範例示範如何使用 batch-detect-dominant-language
。
- AWS CLI
-
偵測多個輸入文字的主要語言
下列
batch-detect-dominant-language
範例會分析多個輸入文字,並傳回每個文字的主要語言。每個預測也會輸出預先訓練的模型可信度分數。aws comprehend batch-detect-dominant-language \ --text-list
"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."
輸出:
{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的慣用語言。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectDominantLanguage
。
-
下列程式碼範例示範如何使用 batch-detect-entities
。
- AWS CLI
-
從多個輸入文字偵測實體
下列
batch-detect-entities
範例會分析多個輸入文字,並傳回每個項目的具名實體。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d batch-detect-entities \ --language-code en \ --text-list"Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."
"Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."
輸出:
{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的實體。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectEntities
。
-
下列程式碼範例示範如何使用 batch-detect-key-phrases
。
- AWS CLI
-
偵測多個文字輸入的金鑰片語
下列
batch-detect-key-phrases
範例會分析多個輸入文字,並傳回每個輸入文字的金鑰名詞片語。也會輸出每個預測的預先訓練模型可信度分數。aws compreh
en
d batch-detect-key-phrases \ --language-code en \ --text-list"Hello Zhang Wei, I am John, writing to you about the trip for next Saturday."
"Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."
"Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."
輸出:
{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的關鍵詞。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectKeyPhrases
。
-
下列程式碼範例示範如何使用 batch-detect-sentiment
。
- AWS CLI
-
偵測多個輸入文字的普遍情緒
下列
batch-detect-sentiment
範例會分析多個輸入文字,並傳回主流情緒 (POSITIVE
每個情緒的NEGATIVE
、、NEUTRAL
MIXED
或 )。aws comprehend batch-detect-sentiment \ --text-list
"That movie was very boring, I can't believe it was over four hours long."
"It is a beautiful day for hiking today."
"My meal was okay, I'm excited to try other restaurants."
\ --language-codeen
輸出:
{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的情緒。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectSentiment
。
-
下列程式碼範例示範如何使用 batch-detect-syntax
。
- AWS CLI
-
檢查多個輸入文字中單詞的語法和部分語音
下列
batch-detect-syntax
範例會分析多個輸入文字的語法,並傳回語音的不同部分。每個預測也會輸出預先訓練模型的可信度分數。aws comprehend batch-detect-syntax \ --text-list
"It is a beautiful day."
"Can you please pass the salt?"
"Please pay the bill before the 31st."
\ --language-codeen
輸出:
{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的語法分析。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectSyntax
。
-
下列程式碼範例示範如何使用 batch-detect-targeted-sentiment
。
- AWS CLI
-
偵測多個輸入文字的情緒和每個具名實體
下列
batch-detect-targeted-sentiment
範例會分析多個輸入文字,並傳回具名實體,以及連接至每個實體的現行情緒。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d batch-detect-targeted-sentiment \ --language-code en \ --text-list"That movie was really boring, the original was way more entertaining"
"The trail is extra beautiful today."
"My meal was just okay."
輸出:
{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的目標情緒。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 BatchDetectTargetedSentiment
。
-
下列程式碼範例示範如何使用 classify-document
。
- AWS CLI
-
使用模型特定端點對文件進行分類
下列
classify-document
範例會分類具有自訂模型端點的文件。此範例中的模型在資料集上接受訓練,該資料集包含標記為垃圾郵件或非垃圾郵件,或 "ham" 的簡訊。aws comprehend classify-document \ --endpoint-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint
\ --text"CONGRATULATIONS! TXT 1235550100 to win $5000"
輸出:
{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂分類。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ClassifyDocument
。
-
下列程式碼範例示範如何使用 contains-pii-entities
。
- AWS CLI
-
分析 PII 資訊是否存在的輸入文字
下列
contains-pii-entities
範例會分析輸入文字中是否存在個人識別資訊 (PII),並傳回已識別 PII 實體類型的標籤,例如名稱、地址、銀行帳戶號碼或電話號碼。aws compreh
en
d contains-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."
輸出:
{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的個人識別資訊 (PII)。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ContainsPiiEntities
。
-
下列程式碼範例示範如何使用 create-dataset
。
- AWS CLI
-
若要建立飛輪資料集
下列
create-dataset
範例會建立飛輪的資料集。此資料集將用作--dataset-type
標籤指定的其他訓練資料。aws comprehend create-dataset \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity
\ --dataset-nameexample-dataset
\ --dataset-type"TRAIN"
\ --input-data-configfile://inputConfig.json
file://inputConfig.json
的內容:{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/training-data.csv" } }
輸出:
{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 CreateDataset
。
-
下列程式碼範例示範如何使用 create-document-classifier
。
- AWS CLI
-
建立文件分類器以分類文件
下列
create-document-classifier
範例會開始文件分類器模型的訓練程序。訓練資料檔案training.csv
位於--input-data-config
標籤。training.csv
是兩欄文件,其中標籤或 分類提供於第一欄,文件則提供於第二欄。aws comprehend create-document-classifier \ --document-classifier-name
example-classifier
\ --data-access-arnarn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --language-codeen
輸出:
{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂分類。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 CreateDocumentClassifier
。
-
下列程式碼範例示範如何使用 create-endpoint
。
- AWS CLI
-
為自訂模型建立端點
下列
create-endpoint
範例會為先前訓練的自訂模型建立同步推論的端點。aws comprehend create-endpoint \ --endpoint-name
example-classifier-endpoint-1
\ --model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier
\ --desired-inference-units1
輸出:
{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 CreateEndpoint
。
-
下列程式碼範例示範如何使用 create-entity-recognizer
。
- AWS CLI
-
建立自訂實體識別器
下列
create-entity-recognizer
範例會開始自訂實體識別器模型的訓練程序。此範例使用包含訓練文件的 CSV 檔案raw_text.csv
、 和 CSV 實體清單entity_list.csv
來訓練模型。entity-list.csv
包含下列資料欄:文字和類型。aws comprehend create-entity-recognizer \ --recognizer-name
example-entity-recognizer
--data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --input-data-config"EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_text.csv},EntityList={S3Uri=s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv}"
--language-codeen
輸出:
{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂實體識別。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 CreateEntityRecognizer
。
-
下列程式碼範例示範如何使用 create-flywheel
。
- AWS CLI
-
建立飛輪
下列
create-flywheel
範例會建立飛輪,以協調文件分類或實體識別模型的持續訓練。此範例中的飛輪是用來管理--active-model-arn
標籤指定的現有訓練模型。飛輪建立時,會在--input-data-lake
標籤建立資料湖。aws comprehend create-flywheel \ --flywheel-name
example-flywheel
\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --data-lake-s3-uri"s3://DOC-EXAMPLE-BUCKET"
輸出:
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 CreateFlywheel
。
-
下列程式碼範例示範如何使用 delete-document-classifier
。
- AWS CLI
-
若要刪除自訂文件分類器
下列
delete-document-classifier
範例會刪除自訂文件分類器模型。aws comprehend delete-document-classifier \ --document-classifier-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DeleteDocumentClassifier
。
-
下列程式碼範例示範如何使用 delete-endpoint
。
- AWS CLI
-
刪除自訂模型的端點
下列
delete-endpoint
範例會刪除模型特定的端點。必須刪除所有端點,才能刪除模型。aws comprehend delete-endpoint \ --endpoint-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DeleteEndpoint
。
-
下列程式碼範例示範如何使用 delete-entity-recognizer
。
- AWS CLI
-
刪除自訂實體識別器模型
下列
delete-entity-recognizer
範例會刪除自訂實體識別器模型。aws comprehend delete-entity-recognizer \ --entity-recognizer-arn
arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DeleteEntityRecognizer
。
-
下列程式碼範例示範如何使用 delete-flywheel
。
- AWS CLI
-
若要刪除飛輪
下列
delete-flywheel
範例會刪除飛輪。不會刪除與飛輪相關聯的資料湖或模型。aws comprehend delete-flywheel \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DeleteFlywheel
。
-
下列程式碼範例示範如何使用 delete-resource-policy
。
- AWS CLI
-
若要刪除資源型政策
下列
delete-resource-policy
範例會從 Amazon Comprehend 資源刪除資源型政策。aws comprehend delete-resource-policy \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的在AWS 帳戶之間複製自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DeleteResourcePolicy
。
-
下列程式碼範例示範如何使用 describe-dataset
。
- AWS CLI
-
描述飛輪資料集
下列
describe-dataset
範例會取得飛輪資料集的屬性。aws comprehend describe-dataset \ --dataset-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset
輸出:
{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeDataset
。
-
下列程式碼範例示範如何使用 describe-document-classification-job
。
- AWS CLI
-
描述文件分類任務
下列
describe-document-classification-job
範例會取得非同步文件分類任務的屬性。aws comprehend describe-document-classification-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂分類。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeDocumentClassificationJob
。
-
下列程式碼範例示範如何使用 describe-document-classifier
。
- AWS CLI
-
描述文件分類器
下列
describe-document-classifier
範例會取得自訂文件分類器模型的屬性。aws comprehend describe-document-classifier \ --document-classifier-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1
輸出:
{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的建立和管理自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeDocumentClassifier
。
-
下列程式碼範例示範如何使用 describe-dominant-language-detection-job
。
- AWS CLI
-
描述主要語言偵測偵測任務。
下列
describe-dominant-language-detection-job
範例會取得非同步主要語言偵測任務的屬性。aws comprehend describe-dominant-language-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeDominantLanguageDetectionJob
。
-
下列程式碼範例示範如何使用 describe-endpoint
。
- AWS CLI
-
描述特定端點
下列
describe-endpoint
範例會取得模型特定端點的屬性。aws comprehend describe-endpoint \ --endpoint-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint
輸出:
{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeEndpoint
。
-
下列程式碼範例示範如何使用 describe-entities-detection-job
。
- AWS CLI
-
描述實體偵測任務
下列
describe-entities-detection-job
範例會取得非同步實體偵測任務的屬性。aws comprehend describe-entities-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 describe-entity-recognizer
。
- AWS CLI
-
描述實體識別符
下列
describe-entity-recognizer
範例會取得自訂實體識別器模型的屬性。aws comprehend describe-entity-recognizer \
entity-recognizer-arn
arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1
輸出:
{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂實體識別。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeEntityRecognizer
。
-
下列程式碼範例示範如何使用 describe-events-detection-job
。
- AWS CLI
-
描述事件偵測任務。
下列
describe-events-detection-job
範例會取得非同步事件偵測任務的屬性。aws comprehend describe-events-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeEventsDetectionJob
。
-
下列程式碼範例示範如何使用 describe-flywheel-iteration
。
- AWS CLI
-
描述飛輪反覆運算
下列
describe-flywheel-iteration
範例會取得飛輪反覆運算的屬性。aws comprehend describe-flywheel-iteration \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel
\ --flywheel-iteration-id20232222AEXAMPLE
輸出:
{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeFlywheelIteration
。
-
下列程式碼範例示範如何使用 describe-flywheel
。
- AWS CLI
-
描述飛輪
下列
describe-flywheel
範例會取得飛輪的屬性。在此範例中,與飛輪相關聯的模型是自訂分類器模型,其經過訓練,可將文件分類為垃圾郵件或非垃圾郵件,或 "ham"。aws comprehend describe-flywheel \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel
輸出:
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeFlywheel
。
-
下列程式碼範例示範如何使用 describe-key-phrases-detection-job
。
- AWS CLI
-
描述關鍵片語偵測任務
下列
describe-key-phrases-detection-job
範例會取得非同步金鑰片語偵測任務的屬性。aws comprehend describe-key-phrases-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeKeyPhrasesDetectionJob
。
-
下列程式碼範例示範如何使用 describe-pii-entities-detection-job
。
- AWS CLI
-
描述 PII 實體偵測任務
下列
describe-pii-entities-detection-job
範例會取得非同步 pii 實體偵測任務的屬性。aws comprehend describe-pii-entities-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribePiiEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 describe-resource-policy
。
- AWS CLI
-
描述連接至模型的資源政策
下列
describe-resource-policy
範例會取得連接至模型之資源型政策的屬性。aws comprehend describe-resource-policy \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
輸出:
{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的在AWS 帳戶之間複製自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeResourcePolicy
。
-
下列程式碼範例示範如何使用 describe-sentiment-detection-job
。
- AWS CLI
-
描述情緒偵測任務
下列
describe-sentiment-detection-job
範例會取得非同步情緒偵測任務的屬性。aws comprehend describe-sentiment-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 describe-targeted-sentiment-detection-job
。
- AWS CLI
-
描述目標情緒偵測任務
下列
describe-targeted-sentiment-detection-job
範例會取得非同步目標情緒偵測任務的屬性。aws comprehend describe-targeted-sentiment-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeTargetedSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 describe-topics-detection-job
。
- AWS CLI
-
描述主題偵測任務
下列
describe-topics-detection-job
範例會取得非同步主題偵測任務的屬性。aws comprehend describe-topics-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DescribeTopicsDetectionJob
。
-
下列程式碼範例示範如何使用 detect-dominant-language
。
- AWS CLI
-
偵測輸入文字的主要語言
以下內容會
detect-dominant-language
分析輸入文字並識別慣用語言。也會輸出預先訓練模型的可信度分數。aws comprehend detect-dominant-language \ --text
"It is a beautiful day in Seattle."
輸出:
{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的慣用語言。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectDominantLanguage
。
-
下列程式碼範例示範如何使用 detect-entities
。
- AWS CLI
-
在輸入文字中偵測具名實體
下列
detect-entities
範例會分析輸入文字並傳回具名實體。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d detect-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."
輸出:
{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的實體。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectEntities
。
-
下列程式碼範例示範如何使用 detect-key-phrases
。
- AWS CLI
-
若要偵測輸入文字中的金鑰片語
下列
detect-key-phrases
範例會分析輸入文字並識別金鑰名詞片語。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d detect-key-phrases \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."
輸出:
{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的關鍵詞。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectKeyPhrases
。
-
下列程式碼範例示範如何使用 detect-pii-entities
。
- AWS CLI
-
若要偵測輸入文字中的 pii 實體
下列
detect-pii-entities
範例會分析輸入文字,並識別包含個人識別資訊 (PII) 的實體。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d detect-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."
輸出:
{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的個人識別資訊 (PII)。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectPiiEntities
。
-
下列程式碼範例示範如何使用 detect-sentiment
。
- AWS CLI
-
偵測輸入文字的情緒
下列
detect-sentiment
範例會分析輸入文字,並傳回目前情緒的推論 (POSITIVE
、MIXED
、NEUTRAL
或NEGATIVE
)。aws compreh
en
d detect-sentiment \ --language-code en \ --text"It is a beautiful day in Seattle"
輸出:
{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的情緒
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectSentiment
。
-
下列程式碼範例示範如何使用 detect-syntax
。
- AWS CLI
-
偵測輸入文字中的語音部分
下列
detect-syntax
範例會分析輸入文字的語法,並傳回語音的不同部分。每個預測也會輸出預先訓練模型的可信度分數。aws compreh
en
d detect-syntax \ --language-code en \ --text"It is a beautiful day in Seattle."
輸出:
{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的語法分析。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectSyntax
。
-
下列程式碼範例示範如何使用 detect-targeted-sentiment
。
- AWS CLI
-
在輸入文字中偵測具名實體的目標情緒
下列
detect-targeted-sentiment
範例會分析輸入文字,並傳回具名實體,以及與每個實體相關聯的目標情緒。也會輸出每個預測的預先訓練模型可信度分數。aws compreh
en
d detect-targeted-sentiment \ --language-code en \ --text"I do not enjoy January because it is too cold but August is the perfect temperature"
輸出:
{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的目標情緒。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectTargetedSentiment
。
-
下列程式碼範例示範如何使用 import-model
。
- AWS CLI
-
若要匯入模型
下列
import-model
範例會從不同的 AWS 帳戶匯入模型。帳戶中的文件分類器模型444455556666
具有資源型政策111122223333
,可讓帳戶匯入模型。aws comprehend import-model \ --source-model-arn
arn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifier
輸出:
{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的在AWS 帳戶之間複製自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ImportModel
。
-
下列程式碼範例示範如何使用 list-datasets
。
- AWS CLI
-
若要列出所有飛輪資料集
下列
list-datasets
範例會列出與飛輪相關聯的所有資料集。aws comprehend list-datasets \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity
輸出:
{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListDatasets
。
-
下列程式碼範例示範如何使用 list-document-classification-jobs
。
- AWS CLI
-
列出所有文件分類任務
下列
list-document-classification-jobs
範例會列出所有文件分類任務。aws comprehend list-document-classification-jobs
輸出:
{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂分類。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListDocumentClassificationJobs
。
-
下列程式碼範例示範如何使用 list-document-classifier-summaries
。
- AWS CLI
-
列出所有建立的文件分類器摘要
下列
list-document-classifier-summaries
範例會列出所有建立的文件分類器摘要。aws comprehend list-document-classifier-summaries
輸出:
{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的建立和管理自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListDocumentClassifierSummaries
。
-
下列程式碼範例示範如何使用 list-document-classifiers
。
- AWS CLI
-
若要列出所有文件分類器
下列
list-document-classifiers
範例列出所有訓練中和訓練中文件分類器模型。aws comprehend list-document-classifiers
輸出:
{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的建立和管理自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListDocumentClassifiers
。
-
下列程式碼範例示範如何使用 list-dominant-language-detection-jobs
。
- AWS CLI
-
列出所有主要語言偵測任務
下列
list-dominant-language-detection-jobs
範例列出所有進行中和已完成的非同步主要語言偵測工作。aws comprehend list-dominant-language-detection-jobs
輸出:
{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListDominantLanguageDetectionJobs
。
-
下列程式碼範例示範如何使用 list-endpoints
。
- AWS CLI
-
列出所有端點
下列
list-endpoints
範例會列出所有作用中的模型特定端點。aws comprehend list-endpoints
輸出:
{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListEndpoints
。
-
下列程式碼範例示範如何使用 list-entities-detection-jobs
。
- AWS CLI
-
若要列出所有實體偵測任務
下列
list-entities-detection-jobs
範例列出所有非同步實體偵測任務。aws comprehend list-entities-detection-jobs
輸出:
{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的實體。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListEntitiesDetectionJobs
。
-
下列程式碼範例示範如何使用 list-entity-recognizer-summaries
。
- AWS CLI
-
列出所有建立實體識別符的摘要
下列
list-entity-recognizer-summaries
範例列出所有實體識別器摘要。aws comprehend list-entity-recognizer-summaries
輸出:
{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂實體識別。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListEntityRecognizerSummaries
。
-
下列程式碼範例示範如何使用 list-entity-recognizers
。
- AWS CLI
-
若要列出所有自訂實體識別器
下列
list-entity-recognizers
範例列出所有建立的自訂實體識別器。aws comprehend list-entity-recognizers
輸出:
{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂實體識別。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListEntityRecognizers
。
-
下列程式碼範例示範如何使用 list-events-detection-jobs
。
- AWS CLI
-
若要列出所有事件偵測任務
下列
list-events-detection-jobs
範例列出所有非同步事件偵測任務。aws comprehend list-events-detection-jobs
輸出:
{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListEventsDetectionJobs
。
-
下列程式碼範例示範如何使用 list-flywheel-iteration-history
。
- AWS CLI
-
若要列出所有飛輪反覆運算歷史記錄
下列
list-flywheel-iteration-history
範例會列出飛輪的所有迭代。aws comprehend list-flywheel-iteration-history --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel
輸出:
{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListFlywheelIterationHistory
。
-
下列程式碼範例示範如何使用 list-flywheels
。
- AWS CLI
-
若要列出所有飛輪
下列
list-flywheels
範例列出所有建立的飛輪。aws comprehend list-flywheels
輸出:
{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListFlywheels
。
-
下列程式碼範例示範如何使用 list-key-phrases-detection-jobs
。
- AWS CLI
-
列出所有關鍵片語偵測任務
下列
list-key-phrases-detection-jobs
範例列出所有進行中和已完成的非同步金鑰片語偵測任務。aws comprehend list-key-phrases-detection-jobs
輸出:
{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListKeyPhrasesDetectionJobs
。
-
下列程式碼範例示範如何使用 list-pii-entities-detection-jobs
。
- AWS CLI
-
若要列出所有 pii 實體偵測任務
下列
list-pii-entities-detection-jobs
範例列出所有進行中和已完成的非同步 pii 偵測任務。aws comprehend list-pii-entities-detection-jobs
輸出:
{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-SOURCE-BUCKET/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListPiiEntitiesDetectionJobs
。
-
下列程式碼範例示範如何使用 list-sentiment-detection-jobs
。
- AWS CLI
-
列出所有情緒偵測任務
下列
list-sentiment-detection-jobs
範例列出所有進行中和已完成的非同步情緒偵測任務。aws comprehend list-sentiment-detection-jobs
輸出:
{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListSentimentDetectionJobs
。
-
下列程式碼範例示範如何使用 list-tags-for-resource
。
- AWS CLI
-
列出資源的標籤
下列
list-tags-for-resource
範例列出 Amazon Comprehend 資源的標籤。aws comprehend list-tags-for-resource \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
輸出:
{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的標記資源。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListTagsForResource
。
-
下列程式碼範例示範如何使用 list-targeted-sentiment-detection-jobs
。
- AWS CLI
-
列出所有目標情緒偵測任務
下列
list-targeted-sentiment-detection-jobs
範例列出所有進行中和已完成的非同步目標情緒偵測任務。aws comprehend list-targeted-sentiment-detection-jobs
輸出:
{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListTargetedSentimentDetectionJobs
。
-
下列程式碼範例示範如何使用 list-topics-detection-jobs
。
- AWS CLI
-
若要列出所有主題偵測任務
下列
list-topics-detection-jobs
範例會列出所有進行中和已完成的非同步主題偵測任務。aws comprehend list-topics-detection-jobs
輸出:
{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-BUCKET", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://DOC-EXAMPLE-DESTINATION-BUCKET/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 ListTopicsDetectionJobs
。
-
下列程式碼範例示範如何使用 put-resource-policy
。
- AWS CLI
-
若要連接資源型政策
下列
put-resource-policy
範例會將資源型政策連接至模型,以便其他 AWS 帳戶匯入 。政策會連接至 帳戶中的模型111122223333
,並允許帳戶444455556666
匯入模型。aws comprehend put-resource-policy \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
\ --resource-policy '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}
'Ouput:
{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的在AWS 帳戶之間複製自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 PutResourcePolicy
。
-
下列程式碼範例示範如何使用 start-document-classification-job
。
- AWS CLI
-
若要啟動文件分類任務
下列
start-document-classification-job
範例會啟動文件分類任務,在--input-data-config
標籤指定的地址的所有檔案上,使用自訂模型。在此範例中,輸入 S3 儲存貯體包含SampleSMStext1.txt
、SampleSMStext2.txt
和SampleSMStext3.txt
。此模型先前已針對垃圾郵件和非垃圾郵件,或「ham」SMS 訊息的文件分類進行訓練。任務完成時,output.tar.gz
會放置在--output-data-config
標籤指定的位置。output.tar.gz
包含predictions.jsonl
列出每個文件的分類。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-document-classification-job \ --job-name
exampleclassificationjob
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET-INPUT/jobdata/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12
SampleSMStext1.txt
的內容:"CONGRATULATIONS! TXT 2155550100 to win $5000"
SampleSMStext2.txt
的內容:"Hi, when do you want me to pick you up from practice?"
SampleSMStext3.txt
的內容:"Plz send bank account # to 2155550100 to claim prize!!"
輸出:
{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }
predictions.jsonl
的內容:{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂分類。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartDocumentClassificationJob
。
-
下列程式碼範例示範如何使用 start-dominant-language-detection-job
。
- AWS CLI
-
若要啟動非同步語言偵測工作
下列
start-dominant-language-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案啟動非同步語言偵測工作。此範例中的 S3 儲存貯體包含Sampletext1.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含每個文字檔案output.txt
的主要語言,以及每個預測預先訓練的模型可信度分數。aws comprehend start-dominant-language-detection-job \ --job-name
example_language_analysis_job
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --language-codeen
Sampletext1.txt 的內容:
"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
output.txt
的內容:{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartDominantLanguageDetectionJob
。
-
下列程式碼範例示範如何使用 start-entities-detection-job
。
- AWS CLI
-
範例 1:使用預先訓練的模型啟動標準實體偵測任務
下列
start-entities-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步實體偵測工作。此範例中的 S3 儲存貯體包含Sampletext1.txt
、Sampletext2.txt
和Sampletext3.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含output.txt
列出每個文字檔案中偵測到的所有具名實體,以及每個預測的預先訓練模型可信度分數。Json 輸出會列印在每個輸入檔案的一行上,但此處的格式僅供讀取。aws comprehend start-entities-detection-job \ --job-name
entitiestest
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --language-codeen
Sampletext1.txt
的內容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."
Sampletext2.txt
的內容:"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "
Sampletext3.txt
的內容:"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
內容
output.txt
具有行縮排,便於讀取:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
範例 2:啟動自訂實體偵測任務
下列
start-entities-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步自訂實體偵測工作。在此範例中,此範例中的 S3 儲存貯體包含SampleFeedback1.txt
、SampleFeedback2.txt
和SampleFeedback3.txt
。實體識別器模型已針對客戶支援意見回饋進行訓練,以識別裝置名稱。當任務完成時,資料夾output
會放在--output-data-config
標籤指定的位置。資料夾包含output.txt
,列出每個文字檔案中偵測到的所有具名實體,以及每個預測的預先訓練模型可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-entities-detection-job \ --job-name
customentitiestest
\ --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer"
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/jobdata/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"
SampleFeedback1.txt
的內容:"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"
SampleFeedback2.txt
的內容:"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"
SampleFeedback3.txt
的內容:"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"
輸出:
{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }
內容
output.txt
具有行縮排,便於讀取:{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的自訂實體識別。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 start-events-detection-job
。
- AWS CLI
-
啟動非同步事件偵測任務
下列
start-events-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步事件偵測任務。可能的目標事件類型包括BANKRUPCTY
、EMPLOYMENT
、CORPORATE_ACQUISITION
、INVESTMENT_GENERAL
、CORPORATE_MERGER
IPO
、RIGHTS_ISSUE
、SECONDARY_OFFERING
、、SHELF_OFFERING
、TENDER_OFFERING
和STOCK_SPLIT
。此範例中的 S3 儲存貯體包含SampleText1.txt
、SampleText2.txt
和SampleText3.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含SampleText1.txt.out
、SampleText2.txt.out
和SampleText3.txt.out
。JSON 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-events-detection-job \ --job-name
events-detection-1
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/EventsData"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole
\ --language-codeen
\ --target-event-types"BANKRUPTCY"
"EMPLOYMENT"
"CORPORATE_ACQUISITION"
"CORPORATE_MERGER"
"INVESTMENT_GENERAL"
SampleText1.txt
的內容:"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."
SampleText2.txt
的內容:"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."
SampleText3.txt
的內容:"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
內容
SampleText1.txt.out
具有行縮排,便於讀取:{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }
SampleText2.txt.out
的內容:{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }
SampleText3.txt.out
的內容:{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartEventsDetectionJob
。
-
下列程式碼範例示範如何使用 start-flywheel-iteration
。
- AWS CLI
-
啟動飛輪反覆運算
下列
start-flywheel-iteration
範例會啟動飛輪反覆運算。此操作會使用飛輪中的任何新資料集來訓練新的模型版本。aws comprehend start-flywheel-iteration \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel
輸出:
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartFlywheelIteration
。
-
下列程式碼範例示範如何使用 start-key-phrases-detection-job
。
- AWS CLI
-
啟動金鑰片語偵測任務
下列
start-key-phrases-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步金鑰片語偵測工作。此範例中的 S3 儲存貯體包含Sampletext1.txt
、Sampletext2.txt
和Sampletext3.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含檔案output.txt
,其中包含每個文字檔案中偵測到的所有金鑰片語,以及每個預測預先訓練的模型可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-key-phrases-detection-job \ --job-name
keyphrasesanalysistest1
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role"
\ --language-codeen
Sampletext1.txt
的內容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."
Sampletext2.txt
的內容:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "
Sampletext3.txt
的內容:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
output.txt
具有行縮排的內容以供讀取:{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartKeyPhrasesDetectionJob
。
-
下列程式碼範例示範如何使用 start-pii-entities-detection-job
。
- AWS CLI
-
啟動非同步 PII 偵測任務
下列
start-pii-entities-detection-job
範例會啟動非同步個人識別資訊 (PII) 實體偵測任務,該任務適用於位於--input-data-config
標籤所指定地址的所有檔案。此範例中的 S3 儲存貯體包含Sampletext1.txt
、Sampletext2.txt
和Sampletext3.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含SampleText1.txt.out
、 和SampleText2.txt.out
,SampleText3.txt.out
列出每個文字檔案中的具名實體。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-pii-entities-detection-job \ --job-name
entities_test
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --language-codeen
\ --modeONLY_OFFSETS
Sampletext1.txt
的內容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."
Sampletext2.txt
的內容:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "
Sampletext3.txt
的內容:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
內容
SampleText1.txt.out
具有行縮排,便於讀取:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }
內容
SampleText2.txt.out
具有行縮排,便於讀取:{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }
內容
SampleText3.txt.out
具有行縮排,便於讀取:{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartPiiEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 start-sentiment-detection-job
。
- AWS CLI
-
啟動非同步情緒分析任務
下列
start-sentiment-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步情緒分析偵測工作。此範例中的 S3 儲存貯體資料夾包含SampleMovieReview1.txt
、SampleMovieReview2.txt
和SampleMovieReview3.txt
。任務完成時,資料夾output
會放置在--output-data-config
標籤指定的位置。資料夾包含 檔案output.txt
,其中包含每個文字檔案的慣用情緒,以及每個預測預先訓練模型的可信度分數。Json 輸出會列印在每個檔案的一行上,但此處的格式僅供讀取。aws comprehend start-sentiment-detection-job \ --job-name
example-sentiment-detection-job
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
SampleMovieReview1.txt
的內容:"The film, AnyMovie2, is fairly predictable and just okay."
SampleMovieReview2.txt
的內容:"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."
SampleMovieReview3.txt
的內容:"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."
輸出:
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }
output.txt
內容包含可讀取的縮排:{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 start-targeted-sentiment-detection-job
。
- AWS CLI
-
啟動非同步目標情緒分析任務
下列
start-targeted-sentiment-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步目標情緒分析偵測工作。此範例中的 S3 儲存貯體資料夾包含SampleMovieReview1.txt
、SampleMovieReview2.txt
和SampleMovieReview3.txt
。任務完成時,output.tar.gz
會放置在--output-data-config
標籤指定的位置。output.tar.gz
包含檔案SampleMovieReview1.txt.out
、SampleMovieReview2.txt.out
和SampleMovieReview3.txt.out
,每個檔案都包含單一輸入文字檔案的所有具名實體和相關聯的情緒。aws comprehend start-targeted-sentiment-detection-job \ --job-name
targeted_movie_review_analysis1
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/MovieData"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
SampleMovieReview1.txt
的內容:"The film, AnyMovie, is fairly predictable and just okay."
SampleMovieReview2.txt
的內容:"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."
SampleMovieReview3.txt
的內容:"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."
輸出:
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }
內容
SampleMovieReview1.txt.out
具有行縮排,便於讀取:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }
可供讀取的
SampleMovieReview2.txt.out
列縮排內容:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }
SampleMovieReview3.txt.out
內容具有行縮排以供讀取:{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartTargetedSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 start-topics-detection-job
。
- AWS CLI
-
啟動主題偵測分析任務
下列
start-topics-detection-job
範例會針對位於--input-data-config
標籤所指定地址的所有檔案,啟動非同步主題偵測任務。任務完成時,資料夾output
會放置在--ouput-data-config
標籤指定的位置。output
包含 topic-terms.csv 和 doc-topics.csv。第一個輸出檔案 topic-terms.csv 是集合中的主題清單。對於每個主題,清單預設會包含根據其權重按主題列出的熱門詞彙。第二個檔案 列出與主題相關聯的文件doc-topics.csv
,以及與該主題相關的文件比例。aws comprehend start-topics-detection-job \ --job-name
example_topics_detection_job
\ --language-codeen
\ --input-data-config"S3Uri=s3://DOC-EXAMPLE-BUCKET/"
\ --output-data-config"S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/"
\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role
\ --language-codeen
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的主題建模。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StartTopicsDetectionJob
。
-
下列程式碼範例示範如何使用 stop-dominant-language-detection-job
。
- AWS CLI
-
若要停止非同步主要語言偵測工作
下列
stop-dominant-language-detection-job
範例會停止進行中的非同步主要語言偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-dominant-language-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopDominantLanguageDetectionJob
。
-
下列程式碼範例示範如何使用 stop-entities-detection-job
。
- AWS CLI
-
若要停止非同步實體偵測工作
下列
stop-entities-detection-job
範例會停止進行中的非同步實體偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-entities-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 stop-events-detection-job
。
- AWS CLI
-
若要停止非同步事件偵測工作
下列
stop-events-detection-job
範例會停止進行中的非同步事件偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-events-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopEventsDetectionJob
。
-
下列程式碼範例示範如何使用 stop-key-phrases-detection-job
。
- AWS CLI
-
停止非同步金鑰片語偵測任務
下列
stop-key-phrases-detection-job
範例會停止進行中的非同步金鑰片語偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-key-phrases-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopKeyPhrasesDetectionJob
。
-
下列程式碼範例示範如何使用 stop-pii-entities-detection-job
。
- AWS CLI
-
停止非同步 pii 實體偵測任務
下列
stop-pii-entities-detection-job
範例會停止進行中的非同步 pii 實體偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-pii-entities-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopPiiEntitiesDetectionJob
。
-
下列程式碼範例示範如何使用 stop-sentiment-detection-job
。
- AWS CLI
-
停止非同步情緒偵測任務
下列
stop-sentiment-detection-job
範例會停止進行中的非同步情緒偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-sentiment-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 stop-targeted-sentiment-detection-job
。
- AWS CLI
-
停止非同步目標情緒偵測任務
下列
stop-targeted-sentiment-detection-job
範例會停止進行中的非同步目標情緒偵測工作。如果目前的任務狀態是IN_PROGRESS
任務,則會標記為終止並進入STOP_REQUESTED
狀態。如果任務在停止之前完成,則會進入COMPLETED
狀態。aws comprehend stop-targeted-sentiment-detection-job \ --job-id
123456abcdeb0e11022f22a11EXAMPLE
輸出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的 Amazon Comprehend 洞察的非同步分析。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopTargetedSentimentDetectionJob
。
-
下列程式碼範例示範如何使用 stop-training-document-classifier
。
- AWS CLI
-
停止訓練文件分類器模型
下列
stop-training-document-classifier
範例會在進行中停止訓練文件分類器模型。aws comprehend stop-training-document-classifier --document-classifier-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的建立和管理自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopTrainingDocumentClassifier
。
-
下列程式碼範例示範如何使用 stop-training-entity-recognizer
。
- AWS CLI
-
停止實體識別器模型的訓練
下列
stop-training-entity-recognizer
範例會在進行中停止實體識別器模型的訓練。aws comprehend stop-training-entity-recognizer --entity-recognizer-arn
"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的建立和管理自訂模型。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 StopTrainingEntityRecognizer
。
-
下列程式碼範例示範如何使用 tag-resource
。
- AWS CLI
-
範例 1:標記資源
下列
tag-resource
範例會將單一標籤新增至 Amazon Comprehend 資源。aws comprehend tag-resource \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
\ --tagsKey=Location,Value=Seattle
此命令沒有輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的標記資源。
範例 2:將多個標籤新增至資源
下列
tag-resource
範例會將多個標籤新增至 Amazon Comprehend 資源。aws comprehend tag-resource \ --resource-arn
"arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1"
\ --tagsKey=location,Value=Seattle
Key=Department,Value=Finance
此命令沒有輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的標記資源。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 TagResource
。
-
下列程式碼範例示範如何使用 untag-resource
。
- AWS CLI
-
範例 1:從資源中移除單一標籤
下列
untag-resource
範例會從 Amazon Comprehend 資源中移除單一標籤。aws comprehend untag-resource \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
--tag-keysLocation
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的標記資源。
範例 2:從資源中移除多個標籤
下列
untag-resource
範例會從 Amazon Comprehend 資源中移除多個標籤。aws comprehend untag-resource \ --resource-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1
--tag-keysLocation
Department
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的標記資源。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 UntagResource
。
-
下列程式碼範例示範如何使用 update-endpoint
。
- AWS CLI
-
範例 1:更新端點的推論單位
下列
update-endpoint
範例會更新端點的相關資訊。在此範例中,推論單位的數量會增加。aws comprehend update-endpoint \ --endpoint-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint
--desired-inference-units2
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
範例 2:更新端點的 動作模型
下列
update-endpoint
範例會更新端點的相關資訊。在此範例中,作用中模型已變更。aws comprehend update-endpoint \ --endpoint-arn
arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint
--active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-new
此命令不會產生輸出。
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的管理 Amazon Comprehend 端點。 Amazon Comprehend
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 UpdateEndpoint
。
-
下列程式碼範例示範如何使用 update-flywheel
。
- AWS CLI
-
若要更新飛輪組態
下列
update-flywheel
範例會更新飛輪組態。在此範例中,飛輪的作用中模型會更新。aws comprehend update-flywheel \ --flywheel-arn
arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1
\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model
輸出:
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://DOC-EXAMPLE-BUCKET/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }
如需詳細資訊,請參閱 Amazon Comprehend 開發人員指南中的飛輪概觀。
-
如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 UpdateFlywheel
。
-