Amazon Managed Service for Apache Flink 之前稱為 Amazon Kinesis Data Analytics for Apache Flink。
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
在 Studio 筆記本中檢視分析資料的範例查詢
下列範例查詢示範如何在 Studio 筆記本中使用視窗查詢來分析資料。
如需 Apache Flink SQL查詢設定的相關資訊,請參閱適用於互動式資料分析的 Zeppelin Notebook 上的 Flink。
若要在 Apache Flink 儀表板中檢視您的應用程式,請在應用程式的 Zeppelin Note 頁面FLINKJOB中選擇 。
如需視窗查詢的詳細資訊,請參閱 Apache Flink 文件
如需 Apache Flink Streaming SQL查詢的更多範例,請參閱 Apache Flink 文件
使用 Amazon MSK/Apache Kafka 建立資料表
您可以使用 Amazon MSK Flink 連接器搭配 Managed Service for Apache Flink Studio 來驗證您與 Plaintext、 SSL或 IAM 驗證的連線。根據您的需求,使用特定屬性建立資料表。
-- Plaintext connection CREATE TABLE your_table ( `column1` STRING, `column2` BIGINT ) WITH ( 'connector' = 'kafka', 'topic' = 'your_topic', 'properties.bootstrap.servers' = '<bootstrap servers>', 'scan.startup.mode' = 'earliest-offset', 'format' = 'json' ); -- SSL connection CREATE TABLE your_table ( `column1` STRING, `column2` BIGINT ) WITH ( 'connector' = 'kafka', 'topic' = 'your_topic', 'properties.bootstrap.servers' = '<bootstrap servers>', 'properties.security.protocol' = 'SSL', 'properties.ssl.truststore.location' = '/usr/lib/jvm/java-11-amazon-corretto/lib/security/cacerts', 'properties.ssl.truststore.password' = 'changeit', 'properties.group.id' = 'myGroup', 'scan.startup.mode' = 'earliest-offset', 'format' = 'json' ); -- IAM connection (or for MSK Serverless) CREATE TABLE your_table ( `column1` STRING, `column2` BIGINT ) WITH ( 'connector' = 'kafka', 'topic' = 'your_topic', 'properties.bootstrap.servers' = '<bootstrap servers>', 'properties.security.protocol' = 'SASL_SSL', 'properties.sasl.mechanism' = 'AWS_MSK_IAM', 'properties.sasl.jaas.config' = 'software.amazon.msk.auth.iam.IAMLoginModule required;', 'properties.sasl.client.callback.handler.class' = 'software.amazon.msk.auth.iam.IAMClientCallbackHandler', 'properties.group.id' = 'myGroup', 'scan.startup.mode' = 'earliest-offset', 'format' = 'json' );
您可以在 Apache Kafka SQL Connector
使用 Kinesis 建立資料表
下列範例示範如何使用 Kinesis 建立資料表:
CREATE TABLE KinesisTable ( `column1` BIGINT, `column2` BIGINT, `column3` BIGINT, `column4` STRING, `ts` TIMESTAMP(3) ) PARTITIONED BY (column1, column2) WITH ( 'connector' = 'kinesis', 'stream' = 'test_stream', 'aws.region' = '<region>', 'scan.stream.initpos' = 'LATEST', 'format' = 'csv' );
如需有關您可以使用之其他屬性的詳細資訊,請參閱 Amazon Kinesis Data Streams SQL Connector
查詢管道時段
下列 Flink Streaming SQL查詢會從ZeppelinTopic
資料表中選取每個五秒緩衝時段的最高價格:
%flink.ssql(type=update) SELECT TUMBLE_END(event_time, INTERVAL '5' SECOND) as winend, MAX(price) as five_second_high, ticker FROM ZeppelinTopic GROUP BY ticker, TUMBLE(event_time, INTERVAL '5' SECOND)
查詢滑動視窗
下列 Apache Flink Streaming SQL查詢會從ZeppelinTopic
資料表中選取每個 5 秒滑動時段的最高價格:
%flink.ssql(type=update) SELECT HOP_END(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND) AS winend, MAX(price) AS sliding_five_second_max FROM ZeppelinTopic//or your table name in AWS Glue GROUP BY HOP(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND)
使用互動式 SQL
此範例會列印事件時間和處理時間的最大值,以及索引鍵-值資料表中的值的總和。請確定您擁有 使用 Scala 產生範例資料 執行中的範例資料產生指令碼。若要嘗試其他SQL查詢,例如篩選和加入 Studio 筆記本,請參閱 Apache Flink 文件中的 Apache Flink 文件:查詢
%flink.ssql(type=single, parallelism=4, refreshInterval=1000, template=<h1>{2}</h1> records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>) -- An interactive query prints how many records from the `key-value-stream` we have seen so far, along with the current processing and event time. SELECT MAX(`et`) as `et`, MAX(`pt`) as `pt`, SUM(`value`) as `sum` FROM `key-values`
%flink.ssql(type=update, parallelism=4, refreshInterval=1000) -- An interactive tumbling window query that displays the number of records observed per (event time) second. -- Browse through the chart views to see different visualizations of the streaming result. SELECT TUMBLE_START(`et`, INTERVAL '1' SECONDS) as `window`, `key`, SUM(`value`) as `sum` FROM `key-values` GROUP BY TUMBLE(`et`, INTERVAL '1' SECONDS), `key`;
使用 BlackHole SQL連接器
連接器 BlackHole SQL不需要您建立 Kinesis 資料串流或 Amazon MSK叢集來測試查詢。如需SQL連接器的相關資訊 BlackHole,請參閱 Apache Flink 文件中的BlackHole SQL連接器
%flink.ssql CREATE TABLE default_catalog.default_database.blackhole_table ( `key` BIGINT, `value` BIGINT, `et` TIMESTAMP(3) ) WITH ( 'connector' = 'blackhole' )
%flink.ssql(parallelism=1) INSERT INTO `test-target` SELECT `key`, `value`, `et` FROM `test-source` WHERE `key` > 3
%flink.ssql(parallelism=2) INSERT INTO `default_catalog`.`default_database`.`blackhole_table` SELECT `key`, `value`, `et` FROM `test-target` WHERE `key` > 7
使用 Scala 產生範例資料
此範例使用 Scala 生成範例資料。您可以使用此範例資料測試各種查詢。使用 create table 陳述式來建立索引鍵-值資料表。
import org.apache.flink.streaming.api.functions.source.datagen.DataGeneratorSource import org.apache.flink.streaming.api.functions.source.datagen.RandomGenerator import org.apache.flink.streaming.api.scala.DataStream import java.sql.Timestamp // ad-hoc convenience methods to be defined on Table implicit class TableOps[T](table: DataStream[T]) { def asView(name: String): DataStream[T] = { if (stenv.listTemporaryViews.contains(name)) { stenv.dropTemporaryView("`" + name + "`") } stenv.createTemporaryView("`" + name + "`", table) return table; } }
%flink(parallelism=4) val stream = senv .addSource(new DataGeneratorSource(RandomGenerator.intGenerator(1, 10), 1000)) .map(key => (key, 1, new Timestamp(System.currentTimeMillis))) .asView("key-values-data-generator")
%flink.ssql(parallelism=4) -- no need to define the paragraph type with explicit parallelism (such as "%flink.ssql(parallelism=2)") -- in this case the INSERT query will inherit the parallelism of the of the above paragraph INSERT INTO `key-values` SELECT `_1` as `key`, `_2` as `value`, `_3` as `et` FROM `key-values-data-generator`
使用互動式 Scala
這是 使用互動式 SQL 的 Scala 翻譯。如需更多 Scala 範例,請參閱 Apache Flink 文件中的 表API
%flink import org.apache.flink.api.scala._ import org.apache.flink.table.api._ import org.apache.flink.table.api.bridge.scala._ // ad-hoc convenience methods to be defined on Table implicit class TableOps(table: Table) { def asView(name: String): Table = { if (stenv.listTemporaryViews.contains(name)) { stenv.dropTemporaryView(name) } stenv.createTemporaryView(name, table) return table; } }
%flink(parallelism=4) // A view that computes many records from the `key-values` we have seen so far, along with the current processing and event time. val query01 = stenv .from("`key-values`") .select( $"et".max().as("et"), $"pt".max().as("pt"), $"value".sum().as("sum") ).asView("query01")
%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1> records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>) -- An interactive query prints the query01 output. SELECT * FROM query01
%flink(parallelism=4) // An tumbling window view that displays the number of records observed per (event time) second. val query02 = stenv .from("`key-values`") .window(Tumble over 1.seconds on $"et" as $"w") .groupBy($"w", $"key") .select( $"w".start.as("window"), $"key", $"value".sum().as("sum") ).asView("query02")
%flink.ssql(type=update, parallelism=4, refreshInterval=1000) -- An interactive query prints the query02 output. -- Browse through the chart views to see different visualizations of the streaming result. SELECT * FROM `query02`
使用互動式 Python
這是 使用互動式 SQL 的 Python 翻譯。如需更多 Python 範例,請參閱 Apache Flink 文件中的 資料表API
%flink.pyflink from pyflink.table.table import Table def as_view(table, name): if (name in st_env.list_temporary_views()): st_env.drop_temporary_view(name) st_env.create_temporary_view(name, table) return table Table.as_view = as_view
%flink.pyflink(parallelism=16) # A view that computes many records from the `key-values` we have seen so far, along with the current processing and event time st_env \ .from_path("`keyvalues`") \ .select(", ".join([ "max(et) as et", "max(pt) as pt", "sum(value) as sum" ])) \ .as_view("query01")
%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1> records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>) -- An interactive query prints the query01 output. SELECT * FROM query01
%flink.pyflink(parallelism=16) # A view that computes many records from the `key-values` we have seen so far, along with the current processing and event time st_env \ .from_path("`key-values`") \ .window(Tumble.over("1.seconds").on("et").alias("w")) \ .group_by("w, key") \ .select(", ".join([ "w.start as window", "key", "sum(value) as sum" ])) \ .as_view("query02")
%flink.ssql(type=update, parallelism=16, refreshInterval=1000) -- An interactive query prints the query02 output. -- Browse through the chart views to see different visualizations of the streaming result. SELECT * FROM `query02`
使用互動式 Python、 SQL和 Scala 的組合
您可以在筆記本中使用 SQL、Python 和 Scala 的任意組合進行互動式分析。在您計劃部署為具有持久狀態應用程式的 Studio 筆記本中,您可以使用 SQL和 Scala 的組合。此範例顯示略過的區段,以及在應用程式中部署為持久狀態的區段。
%flink.ssql CREATE TABLE `default_catalog`.`default_database`.`my-test-source` ( `key` BIGINT NOT NULL, `value` BIGINT NOT NULL, `et` TIMESTAMP(3) NOT NULL, `pt` AS PROCTIME(), WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND ) WITH ( 'connector' = 'kinesis', 'stream' = 'kda-notebook-example-test-source-stream', 'aws.region' = 'eu-west-1', 'scan.stream.initpos' = 'LATEST', 'format' = 'json', 'json.timestamp-format.standard' = 'ISO-8601' )
%flink.ssql CREATE TABLE `default_catalog`.`default_database`.`my-test-target` ( `key` BIGINT NOT NULL, `value` BIGINT NOT NULL, `et` TIMESTAMP(3) NOT NULL, `pt` AS PROCTIME(), WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND ) WITH ( 'connector' = 'kinesis', 'stream' = 'kda-notebook-example-test-target-stream', 'aws.region' = 'eu-west-1', 'scan.stream.initpos' = 'LATEST', 'format' = 'json', 'json.timestamp-format.standard' = 'ISO-8601' )
%flink() // ad-hoc convenience methods to be defined on Table implicit class TableOps(table: Table) { def asView(name: String): Table = { if (stenv.listTemporaryViews.contains(name)) { stenv.dropTemporaryView(name) } stenv.createTemporaryView(name, table) return table; } }
%flink(parallelism=1) val table = stenv .from("`default_catalog`.`default_database`.`my-test-source`") .select($"key", $"value", $"et") .filter($"key" > 10) .asView("query01")
%flink.ssql(parallelism=1) -- forward data INSERT INTO `default_catalog`.`default_database`.`my-test-target` SELECT * FROM `query01`
%flink.ssql(type=update, parallelism=1, refreshInterval=1000) -- forward data to local stream (ignored when deployed as application) SELECT * FROM `query01`
%flink // tell me the meaning of life (ignored when deployed as application!) print("42!")
使用跨帳戶 Kinesis 資料串流
若要使用擁有您 Studio 筆記本之帳戶以外的帳戶中的 Kinesis 資料串流,請在執行 Studio 筆記本的帳戶中建立服務執行角色,在具有資料串流的帳戶中建立角色信任政策。在建立資料表DDL陳述式中的 Kinesis 連接器aws.credentials.role.sessionName
中使用 aws.credentials.provider
aws.credentials.role.arn
、 和 ,根據資料串流建立資料表。
對 Studio 筆記本帳戶使用下列服務執行角色。
{ "Sid": "AllowNotebookToAssumeRole", "Effect": "Allow", "Action": "sts:AssumeRole" "Resource": "*" }
對資料串流帳戶使用 AmazonKinesisFullAccess
政策和下列角色信任政策。
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::
<accountID>
:root" }, "Action": "sts:AssumeRole", "Condition": {} } ] }
為 create table 陳述式使用下面的段落。
%flink.ssql CREATE TABLE test1 ( name VARCHAR, age BIGINT ) WITH ( 'connector' = 'kinesis', 'stream' = 'stream-assume-role-test', 'aws.region' = 'us-east-1', 'aws.credentials.provider' = 'ASSUME_ROLE', 'aws.credentials.role.arn' = 'arn:aws:iam::
<accountID>
:role/stream-assume-role-test-role', 'aws.credentials.role.sessionName' = 'stream-assume-role-test-session', 'scan.stream.initpos' = 'TRIM_HORIZON', 'format' = 'json' )